Noroviruses and Sapoviruses, classified in the Caliciviridae family, are small positive-stranded RNA viruses, considered nowadays the leading cause of acute gastroenteritis globally in both children and adults. Although most noroviruses have been associated with gastrointestinal disease in humans, almost 50 years after its discovery, there is still a lack of comprehensive evidence regarding its biology and pathogenesis mainly because they can be neither conveniently grown in cultured cells nor propagated in animal models. However, other members of this family such as Feline calicivirus (FCV), Murine norovirus (MNV), Rabbit hemorrhagic disease virus (RHDV), and Porcine sapovirus (PS), from which there are accessible propagation systems, have been useful to study the calicivirus replication strategies. Using cell cultures and animal models, many of the functions of the viral proteins in the viral replication cycles have been well-characterized. Moreover, evidence of the role of viral proteins from different members of the family in the establishment of infection has been generated and the mechanism of their immunopathogenesis begins to be understood. In this review, we discuss different aspects of how caliciviruses are implicated in membrane rearrangements, apoptosis, and evasion of the immune responses, highlighting some of the pathogenic mechanisms triggered by different members of the Caliciviridae family.
The leader of the capsid (LC) protein is exclusive to the Vesivirus genus, and it is needed for successful feline calicivirus (FCV) replication, as well as an efficient apoptosis induction through the mitochondrial pathway. In this work, we aimed to determine if the LC protein from the FCV is a viroporin. Although lacking in a transmembrane domain or an amphipathic helix, the LC protein from the FCV is toxic when expressed in bacteria and it oligomerizes through disulfide bonds, which are both key characteristics of viroporins. An electron microscopy analysis of LC-expressing E. coli cells suggest that the protein induces osmotic stress. Moreover, we found that the previously studied C40A LC mutant, that fails to induce apoptosis and that hinders the replication cycle, also oligomerizes but it has a reduced toxicity and fails to induce osmotic stress in bacteria. We propose that the LC protein is a viroporin that acts as a disulfide bond-dependent antimicrobial peptide, similar to the Ebola virus delta peptide.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.