b Kingella kingae is a human oral bacterium that can cause diseases of the skeletal system in children and infective endocarditis in children and adults. K. kingae produces a toxin of the RTX group, RtxA. To investigate the role of RtxA in disease pathogenesis in vivo, K. kingae strain PYKK081 and its isogenic RtxA-deficient strain KKNB100 were tested for their virulence and pathological consequences upon intraperitoneal injections in 7-day-postnatal (PN 7) rats. At the doses above 8.0 ؋ 10 6 cells/animal, PYKK081 was able to cause a fatal illness, resulting in rapid weight loss, bacteremia, and abdominal necrotic lesion formation. Significant histopathology was observed in thymus, spleen, and bone marrow. Strain KKNB100 was less toxic to animals. Neither weight loss, bacteremia, nor histopathological changes were evident. Animals injected with KKNB100 exhibited a significantly elevated circulating white blood cell (WBC) count, whereas animals injected with PYKK081 had a WBC count that resembled that of the uninfected control. This observation parallels the subtleties associated with clinical presentation of K. kingae disease in humans and suggests that the toxin contributes to WBC depletion. Thus, our results demonstrate that RtxA is a key K. kingae virulence factor. Furthermore, our findings suggest that the PN 7 rat can serve as a useful model for understanding disease caused by K. kingae and for elucidating diagnostic parameters in human patients.
c Kingella kingae is a human pathogen that causes pediatric osteoarticular infections and infective endocarditis in children and adults. The bacterium is usually susceptible to -lactam antibiotics, although -lactam resistance has been reported in rare isolates. This study was conducted to identify -lactam-resistant strains and to characterize the resistance mechanism. Screening of a set of 90 K. kingae clinical isolates obtained from different geographic locations revealed high-level resistance to penicillins among 25% of the strains isolated from Minnesota and Iceland. These strains produced TEM-1 -lactamase and were shown to contain additional >50-kb plasmids. Ion Torrent sequencing of extrachromosomal DNA from a -lactamase-producing strain confirmed the plasmid location of the bla TEM gene. An identical plasmid pattern was demonstrated by multiplex PCR in all -lactamase producers. The porin gene's fragments were analyzed to investigate the relatedness of bacterial strains. Phylogenetic analysis revealed 27 single-nucleotide polymorphisms (SNPs) in the por gene fragment, resulting in two major clusters with 11 allele types forming bacterial-strain subclusters. -Lactamase producers were grouped together based on por genotyping. Our results suggest that the -lactamase-producing strains likely originate from a single plasmid-bearing K. kingae isolate that traveled from Europe to the United States, or vice versa. This study highlights the prevalence of penicillin resistance among K. kingae strains in some regions and emphasizes the importance of surveillance for antibiotic resistance of the pathogen.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.