We study smooth tropical plane quartic curves and show that they satisfy certain properties analogous to (but also different from) smooth plane quartics in algebraic geometry. For example, we show that every such curve admits either infinitely many or exactly 7 bitangent lines. We also prove that a smooth tropical plane quartic curve cannot be hyperelliptic.
We study the behavior of theta characteristics on an algebraic curve under the specialization map to a tropical curve. We show that each effective theta characteristic on the tropical curve is the specialization of 2 g−1 even theta characteristics and 2 g−1 odd theta characteristics. We then study the relationship between unramified double covers of a tropical curve and its theta characteristics, and use this to define the tropical Prym variety.
We study lifts of tropical bitangents to the tropicalization of a given complex algebraic curve together with their lifting multiplicities. Using this characterization, we show that generically all the seven bitangents of a smooth tropical plane quartic lift in sets of four to algebraic bitangents. We do this constructively, i.e. we give solutions for the initial terms of the coefficients of the bitangent lines. This is a step towards a tropical proof that a general smooth quartic admits 28 bitangent lines. The methods are also appropriate to count real bitangents; however the conditions to determine whether a tropical bitangent has real lifts are not purely combinatorial.2010 Mathematics Subject Classification. 14T05.
We study the algebraic rank of a divisor on a graph, an invariant defined using divisors on algebraic curves dual to the graph. We prove it satisfies the Riemann-Roch formula, a specialization property, and the Clifford inequality. We prove that it is at most equal to the (usual) combinatorial rank, and that equality holds in many cases, though not in general.2000 Mathematics Subject Classification. Primary 14Hxx, 05Cxx .
We construct a space classifying divisor classes of a fixed degree on all tropical curves of a fixed combinatorial type and show that the function taking a divisor class to its rank is upper semicontinuous. We extend the definition of the Brill-Noether rank of a metric graph to tropical curves and use the upper semicontinuity of the rank function on divisors to show that the Brill-Noether rank varies upper semicontinuously in families of tropical curves. Furthermore, we present a specialization lemma relating the Brill-Noether rank of a tropical curve with the dimension of the Brill-Noether locus of an algebraic curve.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.