This article presents a novel actuator and a new concept for a release mechanism that are especially useful in applications that require fast motion of large masses over long distances. The actuator is based on ultra-fast pulse heating of NiTi wires, which provide a unique combination of large work per volume, short response time and enhanced energy efficiency. The release mechanism utilizes the fast and powerful actuator to form conditions in which the latch (safety pin) moves faster than the deployed device. As a result, the contact between these two masses is disconnected and the resulting friction forces are decreased to approximately zero. The actuator and release mechanism address the two major drawbacks of conventional shape memory alloy (SMA) actuators: slow actuation time and low energy efficiency. Using a dedicated setup, the experimental results validate the disconnection between the masses and map the effects of several variables on the performance of the actuator and release mechanism. In particular, we map the energetic efficiency and find the optimal operating conditions for a successful release using a minimal amount of input energy. At the optimal conditions, the actuator response time and the consumed input energy are smaller by an order of magnitude with respect to performances of previous SMA-based release mechanisms with comparable requirements.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.