OBJECTIVEVascular endothelial cells (VECs) downregulate their rate of glucose uptake in response to hyperglycemia by decreasing the expression of their typical glucose transporter GLUT-1. Hitherto, we discovered critical roles for the protein calreticulin and the arachidonic acid–metabolizing enzyme 12-lipoxygenase in this autoregulatory process. The hypothesis that 4-hydroxydodeca-(2E,6Z)-dienal (4-HDDE), the peroxidation product of 12-lipoxygenase, mediates this downregulatory mechanism by activating peroxisome proliferator–activated receptor (PPAR) δ was investigated.RESEARCH DESIGN AND METHODSEffects of 4-HDDE and PPARδ on the glucose transport system and calreticulin expression in primary bovine aortic endothelial cells were evaluated by pharmacological and molecular interventions.RESULTSUsing GW501516 (PPARδ agonist) and GSK0660 (PPARδ antagonist), we discovered that high-glucose–induced downregulation of the glucose transport system in VECs is mediated by PPARδ. A PPAR-sensitive luciferase reporter assay in VECs revealed that high glucose markedly increased luciferase activity, while GSK0660 abolished it. High-performance liquid chromatography analysis showed that high-glucose incubation substantially elevated the generation of 4-HDDE in VECs. Treatment of VECs, exposed to normal glucose, with 4-HDDE mimicked high glucose and downregulated the glucose transport system and increased calreticulin expression. Like high glucose, 4-HDDE significantly activated PPARδ in cells overexpressing human PPAR (hPPAR)δ but not hPPARα, -γ1, or -γ2. Moreover, silencing of PPARδ prevented high-glucose–dependent alterations in GLUT-1 and calreticulin expression. Finally, specific binding of PPARδ to a PPAR response element in the promoter region of the calreticulin gene was identified by utilizing a specific chromatin immunoprecipitation assay.CONCLUSIONSCollectively, our data show that 4-HDDE plays a central role in the downregulation of glucose uptake in VECs by activating PPARδ.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.