Dispersion curves of fluid-filled elastic-tubes are used for non-destructive measurement of material acoustic properties. The underlying physics leads to a singular numerical procedure when several modes or long-wavelength scenarios take part in the tube dynamics. The literature describes several methods to identify dispersion curves that require a large ratio of samples per length. Described is a method to enrich the amount of available information of an otherwise ill-posed problem, by multiple boundary phase perturbations at each excitation frequency. The method uses two actuators, one at either end of the waveguide to produce different relative phases, followed by a nonlinear model fitting procedure. Presented are a model-based derivation and experimental verification of the proposed approach on an air-filled elastic-tube. The latter shows the capability of the method to recover the dispersion curves even for very weak structural-acoustic coupling and at low frequencies. The portrayed scheme can be applied on various waveguides by using two actuators and only a single sensor, and hence makes dispersion curve estimation realistic in formerly inaccessible cases.
Impedance tubes are commonly used for non-destructive measurement method of the acoustic properties of materials. Most physical models neglect the elastic nature of the tube resulting in a single mode propagation up to the cut-off frequency and are thus unable to accurately predict the propagation patterns in the case of liquid-filled tubes. An understating of the dispersion pattern in the latter case is crucial for the success of the acoustic properties estimation procedure. Furthermore, a model-based control can be implemented on the basis of the dispersion relation which is able to enhance the existing methods. This work presents a case study of an air-filled impedance tube. A novel, two-actuators phase-perturbations technique was developed to identify the tube dispersion curves and to compare to analytical models. The accurate identification of dispersion curves was utilized in a successful effort to control a single mode traveling wave ratio by employing a feedforward control algorithm. The success of the case study in the case of a weak acoustic coupling mechanism such as the air-filled impedance tube emphasizes the capabilities when considering a stronger acoustic coupling such as in the liquid-filled impedance tube.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.