The most important concern in design of filament-wound composite pressure vessels reflects on the determination of the optimum shape and optimum laminate stacking sequence of composite vessels based on the matrix cracking pressure and burst pressure of composite laminates. In this study the Imperialist Competitive Algorithm (ICA) is used to find the optimum laminate stacking sequence of composite vessels that the design considerations are stability and strength constraints. the matrix cracking pressure of filament-wound composite pressure vessels made of different number of helical layers and different layers of Circumferential layers was calculated by using orthotropic material formulae and then, the burst pressure of composite vessels was calculated by using netting analysis. The optimum laminate stacking sequence of filament winding composite was found to maximize the matrix cracking pressure and the burst pressure by using Imperialist Competitive algorithm.
As a consequence of tropical climate featuring abundant rain and sunshine throughout the year, adhesive bonded joints undergo substantial exposure to moisture and elevated temperatures. It is known that the degradation of adhesive materials such as structural epoxy due to weathering could affect the overall bond performance of structural integrity of reinforced concrete such as carbon fibre reinforced polymer composites (CFRP) plate system. The objective of the study is to investigate the in-plane shear properties of structural epoxy material exposed to tropical environmental conditions using Arcan Test Method. The epoxy adhesive was casted in a closed metal mould to produce butterfly shaped specimens. The specimens were exposed to four conditions; laboratory, outdoor, plain water, and salt water. The specimens were tested for shear properties and failed in brittle form. Microstructure analysis was performed to study the fracture surface of the test specimens. The study showed that the tropical exposure conditions influenced the shear strength of the epoxy material, especially for those exposed to plain and salt water conditions, which were 32% lower than the control specimen for specimens exposed to plain water followed by salt water (26.6%), laboratory (25.4%) and finally outdoor (18.4%).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.