<p>Dokumen berita olahraga dalam bentuk web kini memiliki jumlah yang besar dalam kurun waktu singkat. Untuk kemudahan akses dokumen perlu melakukan pengelompokan dokumen berita kedalam beberapa kategori. Hal tersebut bertujuan agar berita olahraga tersusun sesuai dengan kategori yang ditentukan. Berita dapat dikelompokkan secara manual oleh manusia, akan tetapi hal tersebut membutuhkan waktu yang lama untuk melakukan kategorisasi. Metode klasifikasi diusulkan dalam penelitian ini untuk melakukan pengkategorian secara otomatis dokumen berita. Tujuan dilakukannya klasifikasi adalah untuk mempercepat dan mempermudah dalam pemberian kategori, sehingga dapat meningkatkan efisiensi waktu. Pada penelitian ini menggunakan metode klasifikasi Naïve Bayes Classifier. Sebelum dilakukan klasifikasi ada proses preprocessing dengan menggunakan Enhanced Confix Striping Stemmer. Hal ini bertujuan untuk mengembalikan ke bentuk kata dasar, sehingga data berkurang dan proses komputasi menjadi lebih efisien. Pengujian dilakukan menggunakan 18 berita olahraga yang dipilih secara acak oleh user atau tester, dari 18 berita yang diujikan terdapat 14 berita yang bernilai benar atau relevan dengan analisis yang dilakukan use atau tester pada berita uji. Dari penelitian ini dapat disimpulkan bahwa Aplikasi Klasifikasi Berita Olahraga menggunakan Metode Naïve Bayes dengan Enhanced Confix Striping Stemmer mampu mengklasifikasi berita olahraga sesuai dengan kategori masing-masing, seperti Sepak Bola, Basket, Raket, Formula 1, Moto GP dan olahraga lainnya dengan keakuratan sebesar 77%.</p><p> </p><p class="Judul2"><strong><em>Abstract</em></strong></p><p class="Judul2"> </p><p>Web-based sports news currently has a considerable amount of documents. News documents need to be grouped into multiple categories for easy access. The goal is that sports news is structured according to the specified category. News can be grouped manually by humans, but it takes a long time to categorize if it involves large documents. Classification method is proposed in this research to categorize automatically news document. The purpose of doing the classification is to accelerate and simplify the granting of categories, thereby increasing the efficiency of time. In this research using the Naïve Bayes Classifier classification method. Prior to classification there is a preprocessing process using Enhanced Confix Striping Stemmer. It aims to return to the basic word form, so the data is reduced and the computing process becomes more efficient. From the test using 18 sports news randomly selected by the user or tester, there are 14 news stories that are true or relevant to the analysis by the user or the tester on the test news. This study concludes that the Sports News Classification Application using the Naïve Bayes Method with Enhanced Confix Striping Stemmer is able to classify sports news according to their respective categories, such as Football, Basket, Racquet, Formula 1, Moto GP and other sports with accuracy of 77%.</p>
<p align="justify"><em>Search Engine Optimization</em><em> (SEO) merupakan serangkaian proses yang dilakukan secara sistematis dalam sebuah website untuk meningkatkan lalu lintas kunjungan organik melalui mesin pencari. SEO perlu diterapkan pada website dengan tujuan bisa dikenali oleh mesin pencari. Diketahui terdapat salah satu Usaha Kecil Menengah (UKM) di Madura yang sudah memanfaatkan website dalam memasarkan produknya. Namun website yang dibangun tidak dapat dikenali oleh mesin pencari dan tidak dapat berada pada halaman pertama pada </em><em>Search Engine Result Page </em><em>(SERP). Agar website dapat dikenali oleh mesin pencari dan muncul di halaman awal pencarian maka solusi yang ditawarkan yaitu dengan menerapkan metode SEO. Metode ini akan diterapkan dan diuji tingkat keefektifitasannya pada situs penjualan online UKM Madura. Dari hasil pengujian website yang telah menerapkan metode SEO, pengguna baru, sesi dan lalu lintas organik yang didapat, ternyata mengalami peningkatan jika dibandingkan dengan pengujian sebelumnya yang tanpa menerapkan metode ini (peningkatan mencapai 600% untuk pengguna baru, 210,42% untuk sesi dan 46,31% untuk pencarian organik). Dan jika dilihat dari posisi SERP terdapat peningkatan yang pesat dengan rata-rata kemunculan website berada pada halaman 1 jika dibandingkan dengan pengujian website tanpa menggunakan metode SEO yang rata-rata kemunculan website berada pada rank 5 untuk kata kunci “UKM Madura”. Hal ini menunjukkan bahwa metode SEO dapat meningkatkan popularitas suatu website jika diterapkan dengan benar.</em></p><p align="justify"><em> </em></p><p><strong><em>Kata kunci:</em></strong><strong><em> SEO, Website, Pemasaran UKM.</em></strong></p>
Web crawlers are programs that are used by search engines to collect necessary information from the internet automatically according to the rules set by the user. With so much information about sports news on the internet, it takes web crawlers with incredible speed in the process of crawling. There are several previous studies that discussed the process of extracting information in a web document that needs to be considered both in terms of both aspects, including in terms of the structure of the web page and the length of time needed. Therefore, in this research the web crawler application was developed by applying a multi-thread approach. This multi-thread approach to research is used to produce web crawlers that are faster in the process of crawling sports news by involving news sources more than one address at a time. In addition to the multi-thread approach, adjusting the structure of the website pages is also done to ensure the information to be extracted by web crawling. From the results of the multi-thread implementation test on the crawling process, this study has been able to increase speed compared to the single-thread method of 122.95 seconds. But the results of web update detection, have resulted in a speed that decreased by 6.27 seconds in the crawling process with unequal data and the speed on the crawling process has also decreased by 24.76 seconds on server 1 and by 23.92 seconds on server 2.
Salt is one of Indonesia’s major commodities. However, the quality of industrial salt in Indonesia is still an obstacle, so the need for industrial salt still relies on imported salt, especially from Australia. Quality improvement is done through purification using the recrystallization method. The use of a method that is still simple results in the salt being produced still has an as-is quality. Quality is shown from the appearance of salt physically and chemically. Good salt is shown by the crystal form which is smooth and has clear white color. Therefore, good knowledge of salt quality must be known early, in addition to being able to meet the Indonesian National Standard (SNI),in this way salt farmers will more easily improve the quality of salt produced and can differentiate salt designation based on its quality category. This study takes the theme of how to make decisions to determine the quality of salt, so that a decision support system will be built to assist in determining good salt quality by using the Simple Additive Weighting (SAW) method. This method can support the decision making of salt quality determination based on the weight of each attribute. Morever, the total score of the end result can produce a good alternative decision in accordance with specified criteria, so that it will produce salt quality.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.