Chemomechanical magnetorheological finishing (CMMRF) has emerged as a nanofinishing method that combines the characteristics of chemical mechanical polishing (CMP) and magneto-rheological finishing (MRF). The CMMRF process was designed to take into account both the chemical and mechanical effects that occur during the finishing process. In the field of material processing science, this article delves into the fundamentals of the CMMRF method. The potential research patterns linked to CMMRF are assessed and their benefits are determined. Furthermore, the challenges of improving CMMRF process capabilities, as well as the wide futuristic opportunities of the research sector, are emphasised, along with meeting all industrial needs. The findings of this analysis paper will also aid researchers in the field of advanced finishing in identifying process realisation for better results.
In magnetorheological fluid-based finishing processes, the lower gripping of abrasives in between ferromagnetic particle’s chain structure limits its finishing speed, resulting in a lower material removal rate and desired surface standard. In addition, tool ageing has significantly impacted these finishing processes at a higher speed. To improve the efficiency of finishing processes, composite magnetic abrasives are fabricated by using powder metallurgy techniques via both microwave and conventional processing (sintering) routes. Comparison studies were performed on these samples based on ferromagnetic materials (CIPs and EIPs) used and sintering at 950°C under fixed element composition. A newly advanced chemo-mechanical magneto-rheological finishing (CMMRF) process for aluminium alloy surface polishing was also proposed, combining mechanical abrasion and chemical action for the performance evaluation of composite magnetic abrasives. Most notably, the microwave processed composite magnetic abrasive outperformed conventionally processed samples in terms of magnetic and rheological properties. The composite magnetic abrasives significantly increased the rate of material removal from the metal surface while reducing the tool ageing effect. The surface profile and observation show that a nearly defect-free surface was produced at higher speeds using these composite magnetic abrasives compared to simply mixed abrasives based results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.