The exploration of dangerous environments such as underwater coral reefs and shipwrecks is a difficult and potentially life-threatening task for humans, which naturally makes the use of an autonomous robotic system very appealing. This paper presents such an autonomous system, which is capable of autonomous exploration, and shows its use in a series of experiments to collect image data in challenging underwater marine environments. We present novel contributions on three fronts. First, we present an online topic-modeling-based technique to describe what is being observed using a lowdimensional semantic descriptor. This descriptor attempts to be invariant to observations of different corals belonging to the same species, or observations of similar types of rocks observed from different viewpoints. Second, we use the topic descriptor to compute the surprise score of the current observation. This is done by maintaining an online summary of observations thus far, and then computing the surprise score as the distance of the current observation from the summary in the topic space. Finally, we present a novel control strategy for an underwater robot that allows for intelligent traversal, hovering over surprising observations, and swimming quickly over previously seen corals and rocks.
Abstract-In this paper we describe a heterogeneous multirobot system for assisting scientists in environmental monitoring tasks, such as the inspection of marine ecosystems. This team of robots is comprised of a fixed-wing aerial vehicle, an autonomous airboat, and an agile legged underwater robot. These robots interact with off-site scientists and operate in a hierarchical structure to autonomously collect visual footage of interesting underwater regions, from multiple scales and mediums. We discuss organizational and scheduling complexities associated with multi-robot experiments in a field robotics setting. We also present results from our field trials, where we demonstrated the use of this heterogeneous robot team to achieve multi-domain monitoring of coral reefs, based on realtime interaction with a remotely-located marine biologist.
Abstract-Underwater operations present unique challenges and opportunities for robotic applications. These can be attributed in part to limited sensing capabilities, and to locomotion behaviours requiring control schemes adapted to specific tasks or changes in the environment. From enhancing teleoperation procedures, to providing high-level instruction, all the way to fully autonomous operations, enabling autonomous capabilities is fundamental for the successful deployment of underwater robots. This paper presents an overview of the approaches used during underwater sea trials in the coral reefs of Barbados, for two amphibious mobile robots and a set of underwater sensor nodes. We present control mechanisms used for maintaining a preset trajectory during enhanced teleoperations and discuss their experimental results. This is followed by a discussion on amphibious data gathering experiments conducted on the beach. We then present a tetherless underwater communication approach based on pure vision for high-level control of an underwater vehicle. Finally the construction details together with preliminary results from a set of distributed underwater sensor nodes are outlined.
This paper presents a novel approach to modeling curiosity in a mobile robot, which is useful for monitoring and adaptive data collection tasks, especially in the context of long term autonomous missions where preprogrammed missions are likely to have limited utility. We use a realtime topic modeling technique to build a semantic perception model of the environment, using which, we plan a path through the locations in the world with high semantic information content. The life-long learning behavior of the proposed perception model makes it suitable for long-term exploration missions. We validate the approach using simulated exploration experiments using aerial and underwater data, and demonstrate an implementation on the Aqua underwater robot in a variety of scenarios. We find that the proposed exploration paths that are biased towards locations with high topic perplexity, produce better terrain models with high discriminative power. Moreover, we show that the proposed algorithm implemented on Aqua robot is able to do tasks such as coral reef inspection, diver following, and sea floor exploration, without any prior training or preparation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.