Every cell in our body contains a vibrant population of mitochondria, or, more precisely, of mitochondrial DNA molecules (mtDNAs). Just like members of any population mtDNAs multiply (by replication) and die (i.e., are removed, either by degradation or by distribution into the sister cell in mitosis). An intriguing question is whether all mitochondria in this population are equal, especially whether some are responsible primarily for reproduction and some - for empowering the various jobs of the mitochondrion, oxidative phosphorylation in the first place. Importantly, because mtDNA is highly damaged such a separation of responsibilities could help greatly reduce the conversion of DNA damage into real inheritable mutations. An unexpected twist in the resolution of this problem has been brought about by a recent high-precision analysis of mtDNA mutations (Sanchez-Contreras et al. 2023). They discovered that certain transversion mutations, unlike more common transitions, are not accumulating with age in mice. We argue that this observation requires the existence of a permanent replicating subpopulation/lineage of mtDNA molecules, which are protected from DNA damage, a.k.a. the stem mtDNA. This also implies the existence of its antipode i.e., the worker mtDNA, which empowers OSPHOS, sustains damage and rarely replicates. The analysis of long HiFi reads of mtDNA performed by PacBio closed circular sequencing confirms this assertion.
A large-scale study of mutations in mitochondrial DNA has revealed a subset that do not accumulate with age.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.