BackgroundThe use of herbal plant extracts in wound healing is known through decades, but it is necessary to provide scientific data through reverse pharmacology.ObjectiveThe aim of the present study is to find the mechanism behind the healing of wounds using in vitro and in vivo assays.Material and methodsThe study was designed to determine proliferation and mobilization of fibroblast and keratinocytes at the site of injury, angiogenesis at the site of healing and reduction in oxidative stress while healing. In our earlier studies it was observed that herbal extract of Vitex negundo L. (VN), Emblica officinalis Gaertn (EO), and Tridax procumbens L. (TP) showed rapid regeneration of skin, wound contraction and collagen synthesis at the site of injury in excision wound model. In the present study the cell mobilization was monitored in the scratch assay on L929 fibroblastic cell line and HaCaT keratinocytes cell line under the influence of aqueous plant extracts and its formulation. This formulation was also assessed for its angiogenic potential using CAM assay. Study was carried out to probe synergistic effect of polyherbal formulation using excision model in rat.ResultsThe formulation was found to contain high amount of flavonoids, tannins and phenols which facilitate wound healing. At 20 μg/ml concentration of formulation, significant increase in tertiary and quaternary vessels were observed due to angiogenic potential of formulation. Formulation at the concentration of 3 μg/ml and 5 μg/ml showed significant mobilization of keratinocytes and fibroblasts respectively at the site of injury. Polyherbal formulation showed rapid regeneration of skin and wound contraction. Biochemical parameters like hydroxyproline, hexosamine and collagen turnover was increased in test drug treated animals as compared to untreated, whereas antioxidants such as catalase and GSH were increased significantly and decreased amount of tissue MDA was observed.ConclusionPolyherbal formulation prepared from the plant extracts accelerates wound healing process by proliferation and mobilization of fibroblast and keratinocytes, and angiogenesis at the site of injury. It also shows fast contraction of wound with its beneficial improvement in tissue biochemical and antioxidant parameters.
Phyllanthus emblica L. (amla) has been used in Ayurveda as a potent rasayan for treatment of hepatic disorders. Most of the pharmacological studies, however, are largely focused on PE fruit, while the rest of the parts of PE, particularly, bark, remain underinvestigated. Therefore, we aimed to investigate the protective effect of the hydroalcoholic extract of Phyllanthus emblica bark (PEE) in ethanol-induced hepatotoxicity model in rats. Total phenolic, flavonoid, and tannin content and in vitro antioxidant activities were determined by using H2O2 scavenging and ABTS decolorization assays. Our results showed that PEE was rich in total phenols (99.523 ± 1.91 mg GAE/g), total flavonoids (389.33 ± 1.25 mg quercetin hydrate/g), and total tannins (310 ± 0.21 mg catechin/g), which clearly support its strong antioxidant potential. HPTLC-based quantitative analysis revealed the presence of the potent antioxidants gallic acid (25.05 mg/g) and ellagic acid (13.31 mg/g). Moreover, one-month PEE treatment (500 and 1000 mg/kg, p.o.) followed by 30-day 70% ethanol (10 mL/kg) administration showed hepatoprotection as evidenced by significant restoration of ALT (p < 0.01), AST (p < 0.001), ALP (p < 0.05), and TP (p < 0.001) and further confirmed by liver histopathology. PEE-mediated hepatoprotection could be due to its free radical scavenging and antioxidant activity that may be ascribed to its antioxidant components, namely, ellagic acid and gallic acid. Thus, the results of the present study support the therapeutic claims made in Ayurveda about Phyllanthus emblica.
Background In hyperglycemic conditions like diabetes, impaired wound healing occurs due to endothelial damage, dysfunction of leukocyte, decreased phagocytosis and secondary infection which may lead to amputation and debility. Ethnomedicinally, Pteris vittata L. (PV) is used for wound healing. This fern is arsenic hyper-accumulator but its therapeutic aspect is still unexplored. Hence, the present study was put forth to study its aqueous extract and ethanolic extract in diabetic wound healing. Methods Rats were divided into diabetic control, povidine iodine (PI) treated, ethanolic and aqueous extracts of PV treated groups (n = 6). Circular excision wound closure was observed for 15 days with and without treatment. After study completion, skin was divided into four sections wherein first section was homogenized for collagen, hydroxyproline and hexosamine assay. Second, third and fourth sections were used for antioxidant assay, gene expression and histopathology. Column purified fraction of ethanolic extract of PV was subjected to High Performance Liquid Chromatography, Fourier-transform infrared spectroscopy, Nuclear Magnetic Resonance and Mass spectroscopy. Data obtained were analyzed using one way analysis of variance and expressed as Mean ± SD. Results The percentage difference in wound area of day 15 to day 0 showed 65% wound contraction in diabetic control rats. The percentage reduction in wound area showed by PI and extracts of PV were 79% and 85% respectively. Statistical significant increase in collagen, hydroxyproline and hexosamine was observed in the test groups as compared to disease control and PI treated rats. Similarly, statistical significant increases in antioxidant enzymes were observed in the treated groups with decrease in lipid peroxidation. Treatment of rats with PI and two extracts of PV up-regulated Matrix Metalloprotein-9, Collagenase-2 and VEGF-1 and down regulated Tumor Necrosis Factor- α and Interleukin-6. Histopathology in diabetic rats showed incomplete scab formation with haemorrhages which were absent in treated rats. Spectral data showed presence of polyphenolic compounds, fatty acids and ascorbic acid. Conclusion Alternative and complimentary management based on herbal biotherapy which can promote angiogenesis, increase collagen and lower the levels of reactive oxygen species are warranted for healing of wounds in hyperglycaemic conditions which were achieved by two extracts of PV.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.