Time-of-flight secondary ion mass spectrometry (ToF-SIMS) is one of the most important techniques for chemical imaging of nanomaterials and biological samples with high lateral resolution. However, low ionization efficiency limits the detection of many molecules at low concentrations or in very small volumes. One promising approach to increasing the sensitivity of the technique is by the addition of a matrix that promotes ionization and desorption of important analyte molecules. This approach is known as matrix-enhanced secondary-ion mass spectrometry (ME-SIMS). We have investigated the effect of matrix acidity on molecular ion formation in three different biomolecules. A series of cinnamic acid based matrixes that vary in acidity was employed to systematically investigate the influence of matrix acidity on analyte ion formation. The positive ion signal for all three biomolecules showed a strong increase for more acidic matrixes. The most acidic matrix was then vapor-deposited onto mouse brain sections. This led to significant enhancement of lipid signals from the brain. This work indicates that proton donation plays an important role in the formation of molecular ions in ME-SIMS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.