Protein kinases are a large family of approximately 530 highly conserved enzymes that transfer a γ-phosphate group from ATP to a variety of amino acid residues such as tyrosine, serine and threonine which serves as a ubiquitous mechanism for cellular signal transduction. The clinical success of a number of kinase-directed drugs and the frequent observation of disease causing mutations in protein kinases suggest that a large number of kinases may represent therapeutically relevant targets. To-date the majority of clinical and preclinical kinase inhibitors are ATP-competitive, non-covalent inhibitors that achieve selectivity through recognition of unique features of particular protein kinases. Recently there has been renewed interest in the development of irreversible inhibitors that form covalent bonds with cysteine or other nucleophilic residues in the ATP-binding pocket. Irreversible kinase inhibitors have a number of potential advantages including prolonged pharmacodynamics, suitability for rational design, high potency and ability to validate pharmacological specificity through mutation of the reactive cysteine residue. Here we review recent efforts to develop cysteine-targeted irreversible protein kinase inhibitors and discuss their modes of recognizing the ATP-binding pocket and their biological activity profiles. In addition, we provided an informatics assessment of the potential ‘kinase-cysteinome’ and discuss strategies for the efficient development of new covalent inhibitors.
Trypanosomiasis, leishmaniasis, and malaria are major parasitic diseases in developing countries. The existing chemotherapy of these diseases suffers from lack of safe and effective drugs and/or the presence of widespread drug resistance. Cysteine proteases are exciting novel targets for antiparasitic drug design. Virtual screening was performed in an attempt to identify novel druglike nonpeptide inhibitors of parasitic cysteine proteases. The ChemBridge database consisting of approximately 241 000 compounds was screened against homology models of falcipain-2 and falcipain-3 in three consecutive stages of docking. A total of 24 diverse inhibitors were identified from an initial group of 84, of which 12 compounds appeared to be dual inhibitors of falcipain-2 and falcipain-3. Four compounds showed inhibition of both the malarial cysteine proteases as well as Leishmania donovani cysteine protease.
Increasing resistance of malaria parasites to conventional antimalarial drugs is an important factor contributing to the persistence of the disease as a major health threat. The ongoing search for novel targets has resulted in identification and expression of several enzymes including cysteine proteases that are implicated in hemoglobin degradation. Falcipain-2 and falcipain-3 are considered to be the two principal cysteine proteases in this degradation, and hence, are potential drug targets. A homology model of falcipain-3 was built and validated by various structure/geometry verification tools as well as docking studies of known substrates. The correlation coefficient of 0.975 between interaction energies and K m values of these substrates provided additional support for the model. On comparison with the previously reported falcipain-2 homology model, the currently constructed falcipain-3 structure showed important differences between the S2 pockets that might explain the variations in the K m values of various substrates for these enzymes. Further, docking studies also provided insight into possible binding modes and interactions of ligands with falcipain-3. Results of the current study could be employed in de novo drug design leading to development of new antimalarial agents.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.