Breast cancer is the most commonly witnessed cancer amongst women around the world. Computer aided diagnosis (CAD) have been playing a significant role in early detection of breast tumors hence to curb the overall mortality rate. This work presents an enhanced empirical study of impact of dominance-based filtering approach on performances of various state-of-the-art classifiers. The feature dominance level is proportional to the difference in means of benign and malignant tumors. The experiments were done on original Wisconsin Breast Cancer Dataset (WBCD) with total nine features. It is found that the classifiers' performances for top 4 and top 5 dominant-based features are almost equivalent to performances for all nine features. Artificial neural network (ANN) is come forth as the best performing classifier among all with accuracies of 98.9% and 99.6% for top 4 and top 5 dominant features respectively. The error rate of ANN between all nine
HIGHLIGHTS• Dominance-based filtering approach is proposed for breast cancer detection.• Extensive comparative study for breast cancer classification is conducted.• High accuracy of 99.6% using only 5 dominant features is reported.• Error between all nine and top 4 and 5 dominant features is less than 2%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.