In this work we propose a capsule-based approach for semi-supervised video object segmentation. Current video object segmentation methods are frame-based and often require optical flow to capture temporal consistency across frames which can be difficult to compute. To this end, we propose a video based capsule network, CapsuleVOS, which can segment several frames at once conditioned on a reference frame and segmentation mask. This conditioning is performed through a novel routing algorithm for attention-based efficient capsule selection. We address two challenging issues in video object segmentation: 1) segmentation of small objects and 2) occlusion of objects across time. The issue of segmenting small objects is addressed with a zooming module which allows the network to process small spatial regions of the video. Apart from this, the framework utilizes a novel memory module based on recurrent networks which helps in tracking objects when they move out of frame or are occluded. The network is trained end-to-end and we demonstrate its effectiveness on two benchmark video object segmentation datasets; it outperforms current offline approaches on the Youtube-VOS dataset while having a run-time that is almost twice as fast as competing methods. The code is publicly available at https://github.com/KevinDuarte/CapsuleVOS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.