The more advanced science and technology from various disciplines, currently rainfall can be predicted by carrying out various empirical approaches, one of which is by using Artificial Neural Networks (ANN). This study aims to apply ANN with backpropogation algorithm in predicting rainfall. The research data used is BPS data of the transfer city. The results of the study state that of the 6 models (4-5-1, 4-10-1, 4-25-1, 4-5-10-1, 4-5-25-1 and 4-5-50-1) architecture that was trained and tested using Matlab 6.1 application software, the results showed that the 4-5-25-1 architectural model was the best model for making predictions with 75% truth accuracy, Training MSE 0.001004582, Testing MSE 0.021882712 and Epoch 59,076 . It is expected that research can provide input to the government, especially BMKG Pematangsiantar city in predicting Rainfall based on computer science so as to improve the quality of services in the fields of Meteorology, Climatology, Air Quality and Geophysics in accordance with applicable laws and regulations.
Unit Tranfusi Darah (UTD) Mukomuko merupakan salah satu pemasok kebutuhan darah untuk bank darah rumah sakit yang berada di Kabupaten Mukomuko. Pada beberapa proses pendaftaran pendonor masih mengunakan media kertas dalam mengisikan data pendonor. Pada proses ini sanggat rentan terhadap kerusakan, keamanan, dan kehilangan data. Tujuan penelitian ini adalah membuat aplikasi donor darah berbasis web yang dapat digunakan untuk mengelola data pendonor. Dalam pembanguan aplikasi donor darah mengunakan metode Sekuensial Linear, dengan aplikasi Visual Studio Code sebagai text editor, XAMPP, Mysql sebagai data base, bahasa pemprograman PHP, dan framework codeigniter 3. Hasil dari penelitain ini membangun aplikasi donor darah pada Unit Tranfusi Darah (UTD) Mukomuko berbasis web
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.