<b><i>Introduction:</i></b> Tempeh consumption has been linked to the improvement of cognitive function in older people. However, to what extent the amount of microorganism or the size of tempeh serving consumed per day influences the benefit to cognitive functions has not yet been studied. <b><i>Methods:</i></b> This experimental study involved a total of 90 respondents, who were divided into 3 groups: group A (consuming 100 g of Tempeh A/day), group B (consuming 100 g of Tempeh B/day), and group C (control). Intervention was given for 6 months. Cognitive assessments were done before and after the intervention. Blood uric acid level was checked at the end of intervention to examine the effect of tempeh consumption on this. The inclusion criteria were respondents aged 60 years or over with mild cognitive impairment (MCI) who agreed not to consume other fermented food during the study period. Respondents with diabetes were excluded. <b><i>Results:</i></b> There were 84 subjects at the end of the study, majority being female (71.4%) and aged over 65 years (72.6%). An increase in global cognitive scores was found in both groups A and B. The increase in language domain scores was found only in group A. <b><i>Conclusion:</i></b> Both Tempeh A or Tempeh B consumption for 6 months appeared to be beneficial in improving global cognitive function of older people with MCI. Consuming Tempeh A, which had a lower number of microorganisms, was also associated with an improvement in the language domain.
IntroductionOral consumption of probiotics can alter Gut Microbiota by causing changes in the production of probiotic derivatives. Therefore, by utilizing Gut-Brain-Axis (GBA), probiotics could provide an opportunity for central nervous system (CNS) modulation, including cognitive function. Tempeh is a traditional Indonesian food rich in probiotics and beneficial for cognitive function. However, the type of probiotics that play a role in cognitive improvement and the number of probiotics needed for the benefits of increasing cognitive function was unknown.MethodThis experimental study involved a total of 93 subjects, divided into 3 groups: A, B and C/control (n: 33, 32, and 28), who were provided with probiotic supplementation isolated from tempeh for 12 weeks intervention. Inclusion criteria were age > 60 years, and memory impairment with the third repetition value of Word List Memory Immediate Recall (WLMIR) < 7. Subjects with diabetes were excluded. Cognitive function examinations were carried out before and after treatment. The tempeh-derived probiotics were prepared trough several processes. Genomic isolation, detection of GABA-encoding genes, and species identification using the 16S-rRNA gene encoding were performed.ResultsThe probiotics isolate used in the intervention was identified as Limosilactobacillus fermentum. We assigned this isolate as L. fermentum A2.8. The presence of the gene encoding GABA was found on this isolate. There was an increase in the cognitive domains of memory, learning process, and verbal fluency (p < 0.05) in group A (probiotics at concentration of 108 CFU/mL). Memory function, visuospatial, and verbal fluency improved (p < 0.05) in group B (probiotics at concentration of 107 CFU/mL). Only an increase in the memory domain was observed in the control group. Improvement of the learning process occurred only in group A (p = 0.006).ConclusionAdministration of probiotics derived from L. fermentum A2.8 increased the cognitive domains of memory, language and visuospatial function. However, probiotic supplementation at a concentration of 108 CFU/mL was better in improving the learning process. This study succeeded in detecting Lactic Acid Bacterial isolates L. fermentum A2.8 that enclosed gene encoding glutamate decarboxylase (gad) which is involved in the synthesis of -aminobutyric acid (GABA), a neurotransmitter vital for cognitive function.
AbstrakKeterlibatan biofilm pada infeksi kronis dan pada permukaan peralatan medis selalu menjadi wacana penting bagi kesehatan umum di dunia. Biofilm bakteri berkaitan dengan tingkat resistensi terhadap antibiotik yang menjadikan infeksi sulit untuk diobati. Untuk mengatasi masalah ini, pengendalian yang efektif perlu diimplementasikan, seperti penerapan senyawa antibiofilm. Beberapa tahun terakhir, lingkungan akuatik menjadi salah satu sumber potensi penghasil senyawa bioaktif, termasuk senyawa antibiofilm. Tujuan dari penelitian ini yaitu menapis dan mengkarakterisasi bakteri asal air terjun dan laut yang diperoleh dari beberapa lokasi di Indonesia, sebagai penghasil aktivitas antibiofilm. Isolat dievaluasi berdasarkan kemampuan aktivitas antimikroba terhadap enam bakteri patogen dan diikuti dengan penapisan senyawa antibiofilm. Sebanyak 11 dari 65 isolat menunjukkan aktivitas quorum sensing atau quorum quenching, dan hanya terdapat satu isolat yang memiliki aktivitas keduanya. Supernatan kesebelas isolat menunjukkan penghambatan pembentukan biofilm setidaknya terhadap satu patogen dengan metode uji biofilm statis. Karakterisasi senyawa bioaktif dari lima isolat yang terpilih menunjukkan aktivitas senyawa yang berbeda, seperti karbohidrat, protein, dan asam nukleat. Sekuensing gen penyandi 16S rRNA menetapkan kelima isolat tersebut berada dalam dua genus yang berbeda, Vibrio (WK2.4, WK2.6, and WK2.3) dan Pseudomonas (S1.2 dan S1.3). Penelitian ini memberikan wawasan baru terhadap pencarian kandidat bakteri akuatik sebagai agen antibiofilm yang potensial. Abstract Biofilm involvement in chronic infections and on the surface of medical equipments have been considered as public health concern worldwide. Bacterial biofilm is related to antibiotic resistance that made the diseases difficult to treat. An effective control strategy should be implemented, for example, by applying antibiofilm agents. Recently, concerns has been given to aquatic environment as potential sources of bioactive compounds, including the antibiofilm compounds. This study aimed to screen and characterize waterfall and marine bacteria obtained from several locations in Indonesia which have antibiofilm activity. The isolates were first evaluated for their antimicrobial activity against six bacterial pathogens and followed by antibiofilm screening. Eleven out of 65 isolates showed quorum sensing or quorum quenching activity, and one of them showed both activities. Supernatants of 11 isolates inhibited biofilm formation of at least one pathogen by using static biofilm assay. Bioactive compounds characterization of the selected five isolates revealed the presence of different compounds, such as carbohydrates, proteins, and nucleic acids. The 16S rRNA gene sequencing analysis classified five isolates into two different genera, Vibrio (WK2.4, WK2.6, and WK2.3) and Pseudomonas (S1.2 and S1.3). The present study provides insights into the discovery of aquatic bacteria candidates as antibiofilm agents.
Aaptos sp., one of marine sponges that can be found abundantly in Indonesian waters, has been reported to produce bioactive metabolite against tumor, pathogenic microbes, and Herpes Simplex Virus type I (HSV-1) (Coutinho et al. 2002). It was detected that the compounds produced were alkaloids, e.g aaptamin, aaptosin and isoaaptamine; the latter compound showed potent activity against Human Immunodeficiency Virus type I (HIV-1) (Gul et al. 2006). Aaptos sp. was also been reported to produce sterol compounds (Rachmat and Muniarsih 2001), and other novel aaptamine alkaloids possesing various biological activities, including cytotoxic against murine lymphoma L5178Y cell line, antiviral, antimicrobial, antifungal, antiparasitic, α-adrenergic antagonistic, radical scavenging, and antifouling activity (Pham et al. 2013).Sponge such as Aaptos sp. is very rich in microorganism including bacteria associated within their body. About 40 % of sponge body is bacteria, and its role is very significant in the sponge metabolism (Taylor et al. 2007). The sponge produces similar metabolites from their associated bacteria (Radjasa et Aaptos sp. is a marine sponge that could produce bioactive compounds such as aaptamin, aaptosin, and isoaaptamin which have activities as antitumor, antimicrobial, and antiviral. Community of bacteria associated with the sponge might correlate with production of those bioactive compounds and be affected by water environment where the sponge grow. The presence of anthropogenic stressor such as pollutans might become a burden to the waters where the biota grown and could affect the microbial biodiversity in the sponge and its active metabolite produced. The objective of this research was to analyze bacterial community associated with Aaptos sp. from Rote Island and Seribu Islands, using T-RFLP method. The results showed that bacterial community associated with Aaptos sp. from both sampling sites shared 40.81% similarity in which they were dominated by the same bacteria class of Actinobacteria, Flavobacteria, α-proteobacteria, δ-proteobacteria, and γ-proteobacteria. The bacteria collected from Rote island were more highly distributed and diverse than those from Seribu Islands. A total of 23 classes of microorganism were identified in Rote Island waters, while in Seribu Islands was 14 classes of microorganism. The presence of Actinobacteria and Proteobacteria in Aaptos sp., is allegedly involved in the production of secondary metabolites.
The use of biocontrol agent in aquaculture is being adapted as an effective alternative to antibiotics which can lead to the elaboration of antibiotic-resistant bacteria and confer unpleasant impacts to aquatic organisms. Aquatic bacteria have been discovered as biocontrol agents and potential probiotic candidates to improve the health of aquatic organisms, feed efficiency, and disease resistance to aquaculture pathogens. However, local isolate has not intensively been explored and used to increase aquaculture sector productivity. Therefore, this research aimed to determine minimum inhibitory concentrations of their antibacterial compounds against aquaculture pathogens and to characterize aquatic bacteria by their viability in the feed. Four isolates from several aquatic environments in Indonesia (Pseudomonas sp. S1.1, Pseudomonas sp. S1.2, Pseudomonas sp. SL1.1, and Bacillus subtilis KM16) were used to characterize of antibacterial compound and to determine the viability in feed. Ethyl acetate extracts from all isolates showed better antibacaterial activity against Aeromonas hydrophila and Vibrio vulnificus than chloroform and dichloromethane extracts, in which ethyl acetate extract from Bacillus subtilis KM16 showed the strongest antibacterial activity. Pseudomonas spp. were more effective against V. vulnificus (40 mg/mL) and Bacillus subtilis KM16 was more effective against A. hydrophila (20 mg/mL), as proved by the minimum inhibitory concentrations of their ethyl acetate extracts. In this research, Bacillus subtilis KM16 had stable viability in feed than Pseudomonas sp. isolates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.