Although the effect of volatile organic compounds (VOCs) on the oxidation of dissolved sulfur dioxide by oxygen has been the subject of many investigations, this is the first study which examines the effect of a large number of precisely 16 hydroxy compounds. The kinetics both in the absence and the presence of VOCs was defined by rate laws (A and B): -d[S(IV)]dt = R₀ = k₀[S(IV)] (A) -d[S(IV)]dt = R(i) = k(i)[S(IV)] (B) where R₀ and k₀ are the initial rate and first-order rate constant, respectively, in the absence of VOCs, R(i), and k(i) are the initial rate and the first-order rate constant, respectively, in the presence of VOCs, and [S(IV)] is the concentration of dissolved sulfur dioxide, sulfur(IV). The nature of the dependence of k(i) on the concentration of inhibitor, [Inh], was defined by Eq. (C). [k(i) = k₀/(1 + B[Inh]) (C) where B is an empirical inhibition parameter. The values of B have been determined from the plots of 1/k(i) versus [Inh]. Among aliphatic and aromatic hydroxy compounds studied, t-butyl alcohol and pinacol were without any inhibition effect due to the absence of secondary or tertiary hydrogen. The values of inhibition parameter, B, were related to k(inh), the rate constant for the reaction of SO₄(-) radical with the inhibitor, by Eq. (D). B = (9 ± 2) x 10⁻⁴ x k(inh) (D) Equation (D) may be used to calculate the values of either of B or k(inh) provided that the other is known. The extent of inhibition depends on the value of the composite term, B[Inh]. However, in accordance with Eq. (C), the extent of inhibition would be sizeable and measurable when B[Inh] > 0.1 and oxidation of S(IV) would be almost completely stopped when B[Inh] ≥ 10. B[Inh] value can be used as a guide whether the reaction step: SO4 (-) + organics → SO₄(2-) + non-chain products: should be included in the multiphase models or not.
In August 2012, eight rainwater samples were collected and analyzed for pH and metal ions, viz., iron, copper, and manganese. The pH was within the range 6.84-7.65. The rate of oxidation of dissolved sulfur dioxide was determined using these rainwater samples as reaction medium. Kinetics was defined by the rate law: -d[S(IV)]/dt = R o = k o[S(IV)]], where k o is the first-order rate constant and R o is the rate of the reaction. The effect of two volatile organic compounds-ethanol and 2-butanol-was examined and found to inhibit the oxidation as defined by the rate law: k obs = k o/(1 + B [Inh]), where k obs is the first-order rate constant in the presence of the inhibitor, [Inh] is the concentration of the inhibitor, and B is the inhibitor parameter-an empirical constant. In the pH range of collected rainwater samples, the values of first-order rate constants ranged from 3.1 × 10(-5) to 1.5 × 10(-4) s(-1) at 25 °C. The values of inhibition parameter were found to be (5.99 ± 3.91 × 10(4)) (ethanol) and (3.95 ± 2.36) × 10(4) (2-butanol) at 25 °C.
Like many other volatile organic compounds (VOCs), the methoxy derivatives of benzene and benzoic acid are found in the atmosphere and, therefore, looking to their possible intervention in aqueous phase atmospheric oxidation of the major acid rain precursor, SO2, by oxygen, the kinetics of SO2 [hereafter referred to as S(IV)] autoxidation have been studied in the presence of methoxybenzene (anisole) and disubstituted 1,2-dimethoxybenzene, 1,3-dimethoxybenzene and 1,4-dimethoxybenzene. The effects of benzoic acid and its 2,6-dimethoxy, 3,4-dimethoxy, 2,3,4-trimethoxy and 2,4,5-trimethoxy derivatives have also been examined, as have the influences of 4-hydroxybenzoic acid, benzanilide and o-sulfobenzimide. As the methoxy group is known to influence the reaction SO4–· + organics [Formula: see text] SO42– + non-chain products, to understand the degree of influence of the methoxy group on the inhibition of this reaction, this series of methoxy compounds was selected. The kinetics were first-order in S(IV). Most of the VOCs inhibited S(IV) autoxidation, except benzanilide and o-sulfobenzimide, in accordance with kobs = k0/(1 + B [Inh]), where kobs and k0 are the first-order rate constants in the presence and absence of VOCs respectively and B is the inhibition parameter. The most interesting feature of this work is that, despite the high kinh values, the B values are unexpectedly quite low and benzanilide and o-sulfobenzimide showed no effect. The B values appear to be independent of kinh, which is opposite to that found in the case of a series of hydroxyl compounds. It appears probable that additional steps involving peroxy intermediates are involved.
The automobile exhausts are one of the major sources of particulate matter in urban areas and these particles are known to influence the atmospheric chemistry in a variety of ways. Because of this, the oxidation of dissolved sulfur dioxide by oxygen was studied in aqueous suspensions of particulates, obtained by scraping the particles deposited inside a diesel truck exhaust pipe (DEP). A variation in pH showed the rate to increase with increase in pH from 5.22 to about ∼6.3 and to decrease thereafter becoming very slow at pH = 8.2. In acetate-buffered medium, the reaction rate was higher than the rate in unbuffered medium at the same pH. Further, the rate was found to be higher in suspension than in the leachate under otherwise identical conditions. And, the reaction rate in the blank reaction was the slowest. This appears to be due to catalysis by leached metal ions in leachate and due to catalysis by leached metal ions and particulate surface both in suspensions. The kinetics of dissolved SO2 oxidation in acetate-buffered medium as well as in unbuffered medium at pH = 5.22 were defined by rate law: k obs = k 0 + k cat [DEP], where k obs and k 0 are observed rate constants in the presence and the absence of DEP and k cat is the rate constant for DEP-catalyzed pathway. At pH = 8.2, the reaction rate was strongly inhibited by DEP in buffered and unbuffered media. Results suggest that the DEP would have an inhibiting effect in those areas where rainwater pH is 7 or more. These results at high pH are of particular significance to the Indian subcontinent, because of high rainwater pH. Conversely, it indicates the DEP to retard the oxidation of dissolved SO2 and control rainwater acidification.
The oxidation of dissolved sulfur dioxide, sulfur(IV), by oxygen proceeds through the involvement of sulfoxy radicals among which sulfate radical anion is the main chain carrier. When organics are present, they inhibit the oxidation of sulfur(IV) via scavenging of SO4− radicals. In contrast to previous studies, which were limited mostly to aliphatic compounds, this paper presents the results of the effect of 13 new volatile organic compounds (VOCs) including aromatic and heterocyclic on uncatalyzed sulfur(IV) autoxidation at pH 8.2 and 25°C. In all cases, the kinetics was first order in the presence and absence of VOCs and experimental rate law was Eq. (1). trueright−d[normalSfalse( IV false)]/normaldt=k obs []normalSfalse( IV false)=ko[]normalSfalse( IV false)/{}1+Bfalse[ Inh false]where −d[S(IV)]/dt is the rate of sulfur(IV) disappearance, kobs is the first‐order rate constant in the presence of inhibitor, ko is the first‐order rate constant in the absence of inhibitor, [S(IV)] is concentration of sulfur(IV) at time, t, and B is an inhibition parameter. VOCs cause inhibition by scavenging sulfate radical anions, which propagate the autoxidation chain. An analysis of B (Eq. (1)) and kinh (Eq. (2)) values for 21 aliphatic, aromatic, acyclic, and heterocyclic organic compounds showed that these to be related by Eq. (3) for a subgroup and Eq. (4) for b subgroup. trueright SO 4−+ VOC 0.33em⟶k inh 0.33em SO 42−+ VOC a subgroup (benzamide, 2,2‐dimethyl‐1‐propanol, 1‐hexanol, methanol, ethanol, 1‐propanol, 2‐ propanol, 1‐butanol, 2‐butanol, ethylene glycol, rebaudioside A) truerightB=()0.87±0.21×10−30.16emk inh b subgroup (o‐toluic acid, m‐toluic acid, p‐toluic acid, 4‐hydroxybenzoic acid, 1‐heptanol, glycerol, sucralose, acesuifame K, glycine, 3‐pentanol) truerightB=()1.2±0.3×10−30.16emk inh
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.