The effects of aluminum content on microstructure, ductility and formability of advanced high strength low alloy TRIP (Transformation-Induced Plasticity)-aided ferrous sheet steels with annealed martensite matrix (or TRIP-aided annealed martensitic steel) were investigated in order to realize hot-dip galvanization. Aluminum addition of 0.5-1.0 mass% (and simultaneous silicon removal of the same amount) to a 0.2C-1.5Si-1.5Mn-0.04Al (mass%) steel refined the matrix structure and retained austenite needles and increased carbon concentration of retained austenite. It also brought on an excellent total elongation, stretchflangeability and bendability, although the tensile strength decreased. Optimum austempering temperature for the total elongation increased to 450-475ЊC, due to the increased carbon concentration of retained austenite. On the other hand, optimum austempering temperatures for the stretch-flangeability and bendability were maintained at 350-400ЊC, mainly due to uniform fine lath matrix and retained austenite needles. If only large total elongation is required for the TRIP-aided steel, it is expected that hot-dip galvanizing immediately after continuous intercritical annealing can be realized.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.