In iron-pnictide superconductivity, the interband interaction between the hole and electron Fermi surfaces (FSs) is believed to play an important role. However, KFe(2)As(2) has three zone-centered hole FSs and no electron FS but still exhibits superconductivity. Our ultrahigh-resolution laser angle-resolved photoemission spectroscopy unveils that KFe(2)As(2) is a nodal s-wave superconductor with highly unusual FS-selective multi-gap structure: a nodeless gap on the inner FS, an unconventional gap with "octet-line nodes" on the middle FS, and an almost-zero gap on the outer FS. This gap structure may arise from the frustration between competing pairing interactions on the hole FSs causing the eightfold sign reversal. Our results suggest that the A(1g) superconducting symmetry is universal in iron-pnictides, in spite of the variety of gap functions.
The thermal conductivity κ of the iron-arsenide superconductor KFe2As2 was measured down to 50 mK for a heat current parallel and perpendicular to the tetragonal c axis. A residual linear term at T → 0, κ0/T , is observed for both current directions, confirming the presence of nodes in the superconducting gap. Our value of κ0/T in the plane is equal to that reported by Dong et al. [Phys. Rev. Lett. 104, 087005 (2010)] for a sample whose residual resistivity ρ0 was ten times larger. This independence of κ0/T on impurity scattering is the signature of universal heat transport, a property of superconducting states with symmetry-imposed line nodes. This argues against an s-wave state with accidental nodes. It favors instead a d-wave state, an assignment consistent with five additional properties: the magnitude of the critical scattering rate Γc for suppressing Tc to zero; the magnitude of κ0/T , and its dependence on current direction and on magnetic field; the temperature dependence of κ(T ).
Among the iron-based pnictide superconductors the material KFe2As2 is unusual in that its Fermi surface does not consist of quasi-nested electron and hole pockets. Here we report measurements of the temperature dependent London penetration depth of very clean crystals of this compound with residual resistivity ratio > 1200. We show that the superfluid density at low temperatures exhibits a strong linear-in-temperature dependence which implies that there are line nodes in the energy gap on the large zone-centered hole sheets. The results indicate that KFe2As2 is an unconventional superconductor with strong electron correlations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.