Abstract:A convenient framework to treat massless two-dimensional scattering theories has been established by Buchholz. In this framework, we show that the asymptotic algebra and the scattering matrix completely characterize the given theory under asymptotic completeness and standard assumptions.Then we obtain several families of interacting wedge-local nets by a purely von Neumann algebraic procedure. One particular case of them coincides with the deformation of chiral CFT by Buchholz-Lechner-Summers. In another case, we manage to determine completely the strictly local elements. Finally, using Longo-Witten endomorphisms on the U (1)-current net and the free fermion net, a large family of wedge-local nets is constructed.
Abstract:Recently, large families of two-dimensional quantum field theories with factorizing S-matrices have been constructed by the operator-algebraic methods, by first showing the existence of observables localized in wedge-shaped regions. However, these constructions have been limited to the class of S-matrices whose components are analytic in rapidity in the physical strip. In this work, we construct candidates for observables in wedges for scalar factorizing S-matrices with poles in the physical strip and show that they weakly commute on a certain domain. We discuss some technical issues concerning further developments, especially the self-adjointness of the candidate operators here and strong commutativity between them.
Abstract:In the first part, we have constructed several families of interacting wedgelocal nets of von Neumann algebras. In particular, we discovered a family of models based on the endomorphisms of the U(1)-current algebra A (0) of Longo-Witten.In this second part, we further investigate endomorphisms and interacting models. The key ingredient is the free massless fermionic net, which contains the U(1)-current net as the fixed point subnet with respect to the U(1) gauge action. Through the restriction to the subnet, we construct a new family of Longo-Witten endomorphisms on A (0) and accordingly interacting wedge-local nets in two-dimensional spacetime. The U(1)-current net admits the structure of particle numbers and the S-matrices of the models constructed here do mix the spaces with different particle numbers of the bosonic Fock space.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.