This paper proposes a solution for merging the measurements from two perpendicular profiling sonars with different beam-widths, in the context of underwater karst (cave) exploration and mapping. This work is a key step towards the development of a full 6D pose SLAM framework adapted to karst aquifer, where potential water turbidity disqualifies vision-based methods, hence relying on acoustic sonar measurements. Those environments have complex geometries which require 3D sensing. Wide-beam sonars are mandatory to cover previously seen surfaces but do not provide 3D measurements as the elevation angles are unknown. The approach proposed in this paper leverages the narrow-beam sonar measurements to estimate local karst surface with Gaussian process regression. The estimated surface is then further exploited to infer scaled-beta distributions of elevation angles from a wide-beam sonar. The pertinence of the method was validated through experiments on simulated environments. As a result, this approach allows one to benefit from the high coverage provided by wide-beam sonars without the drawback of loosing 3D information.
A robot, in order to be autonomous, needs some kind of representation of its surrounding environment. From a general point of view, basic robotic tasks (such as localization, mapping, object handling, etc.) can be carried out with only very simple geometric primitives, usually extracted from raw sensor data. But whenever an interaction with a human being is involved, robots must have an understanding of concepts expressed in human natural language. In most approaches, this is done through a prebuilt ontology. In this paper, we try to bridge the gap between data driven methods and semantic based approaches by introducing a 3layer environment model based on "instances" : sensor data based observations of concepts stored in a knowledge graph. We will focus on our original object-oriented ontology construction and illustrate the flow of our model in a simple showcase.
This paper proposes MpIC, an on-manifold derivation of the probabilistic Iterative Correspondence (pIC) algorithm, which is a stochastic version of the original Iterative Closest Point. It is developed in the context of autonomous underwater karst exploration based on acoustic sonars. First, a derivation of pIC based on the Lie group structure of [Formula: see text] is developed. The closed-form expression of the covariance modeling the estimated rigid transformation is also provided. In a second part, its application to 3D scan matching between acoustic sonar measurements is proposed. It is a prolongation of previous work on elevation angle estimation from wide-beam acoustic sonar. While the pIC approach proposed is intended to be a key component in a Simultaneous Localization and Mapping framework, this paper focuses on assessing its viability on a unitary basis. As ground truth data in karst aquifer are difficult to obtain, quantitative experiments are carried out on a simulated karst environment and show improvement compared to previous state-of-the-art approach. The algorithm is also evaluated on a real underwater cave dataset demonstrating its practical applicability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.