Objective We evaluated the ability of a coupled pattern-mining and clustering method to identify homogeneous groups of subjects in terms of healthcare resource use, prognosis and treatment sequences, in renal cancer patients beginning oral anticancer treatment. Methods Data were retrieved from the permanent sample of the French medico-administrative database. We applied the CP-SPAM algorithm for pattern mining to healthcare use sequences, followed by hierarchical clustering on principal components (HCPC). Results and conclusion We identified 127 individuals with renal cancer with a first reimbursement of an oral anticancer drug between 2010 and 2017. Clustering identified three groups of subjects, and discrimination between these groups was good. These clusters differed significantly in terms of mortality at six and 12 months, and medical follow-up profile (predominantly outpatient or inpatient care, biological monitoring, reimbursement of supportive care drugs). This case study highlights the potential utility of applying sequence-mining algorithms to a large range of healthcare reimbursement data, to identify groups of subjects homogeneous in terms of their care pathways and medical behaviors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.