The chemical characteristics of wheat straw lignin pretreated under dilute acid conditions were compared. After pretreatment, the lignin content of the solid residue increased as temperature increased (from 160°C to 190°C) and with the amount of acid added (0%, 0.25%, or 1% H2SO4). Pretreatment at 190°C with increasing concentrations of acid catalyst led to a decrease in glucan content, whereas the glucan content remained almost constant at 160°C pretreatment regardless of the acid concentration. The xylan content decreased in proportion with increased acid concentration and pretreatment temperature. The residual lignins were characterized by solution-state, two-dimensional (2D) nuclear magnetic resonance (NMR) spectroscopy and size-exclusion chromatography (SEC). Results showed that more ether bonds were cleaved with increased pretreatment temperature and lower pH, whereas the levels of carbon-carbon bonded structures (e.g. phenylcoumaran and resinol units) were hardly affected. With a pretreatment of 160°C and 1% H2SO4, the majority of the β-O-4 bonds were cleaved. In addition, lignin depolymerization was more evident than repolymerization at higher pretreatment temperatures and lower pH. Documenting lignin structural changes as a function of pretreatment parameters provides a tool for biorefineries to gain flexibility in processing parameters with full control over the final properties of the products.
When agricultural residues are processed to ethanol, lignin and silica are some of the main byproducts. Separation of these two products is difficult and the chemical interactions between lignin and silica are not well described. In the present study, the effect of lignin-silica complexing has been investigated by characterizing lignin and silica coprecipitates by FTIR and solid state NMR. Silica particles were coprecipitated with three different lignins, three lignin model compounds, and two silanes representing silica-inlignin model compounds. Comparison of 29 Si SP/MAS NMR spectra revealed differences in the distribution of silanol hydroxyl groups among different coprecipitates. These differences are dependent on the lignin type. The results are interpreted that the underlying mechanism of the interactions is the formation of hydrogen bonds between lignin aliphatic hydroxyl or carboxyl groups and the silanols, but not a condensation of the silica-inlignin among the silica particles and not the formation of C-O-Si bonds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.