Enterococcus faecium are commensal bacteria inhabiting the gastrointestinal tract of animals and humans and an important cause of drug-resistant nosocomial infections. This longitudinal study aimed to determine whether changes in the antimicrobial resistance (AMR) phenotype and genotype occurred among Enterococcus spp. isolated from cattle rectal samples obtained at the entry to and exit from an Australian feedlot. The samples obtained at the feedlot induction yielded enterococci (104/150; 69.3%), speciated as E. hirae (90/104; 86.5%), E. faecium (9/104; 8.7%), E. mundtii (3/104; 2.9%), E. durans, and E. casseliflavus (1/104; 1.0% each). AMR was observed to lincomycin (63/104; 60.6%), daptomycin (26/104; 25.0%), nitrofurantoin (9/104; 8.7%), ciprofloxacin (7/104; 6.7%), tetracycline (5/104; 4.8%), tigecycline (4/104; 3.9%), and quinupristin/dalfopristin (3/104; 2.9%). From the rectal swab samples collected at the abattoir from the same animals (i.e., the feedlot exit), the enterococci recovery was significantly higher (144/150; 96.0%), with a marked shift in species distribution dominated by E. faecium (117/144; 81.3%). However, the prevalence of AMR to individual antimicrobials remained largely static between the entry and exit except for the increased resistance to nitrofurantoin (77/144; 53.5%) and quinupristin/dalfopristin (26/144; 18.1%). Overall, 13 AMR genes were observed among the 62 E. faecium isolates. These included aac(6’)Ii, aac(6’)-Iid, and ant(6)-Ia (aminoglycosides); eatAv, lnu(G), vat(E), msr(C), and erm(B) (macrolides, lincosamides, and streptogramins); efmA (fluoroquinolones); and tet(45), tet(L), tet(M), and tet(S) (tetracyclines). The results confirm the presence of fluoroquinolone- and streptogramin-resistant enterococci in cattle faeces at the feedlot entry in the absence of antimicrobial selection pressure. E. faecium, exhibiting increased nitrofurantoin resistance, became the dominant Enterococcus spp. during the feeding period.
This study investigated the antimicrobial resistance (AMR) profile of fecal Escherichia coli isolates from beef cattle (n = 150) at entry and exit from an Australian feedlot. Sample plating on MacConkey agar and Brilliance ESBL agar differentiated generic from extended-spectrum β-lactamase (ESBL)-producing E. coli, respectively. Resistance profiles were determined by minimum inhibitory concentration (MIC) testing and further analyzed by whole-genome sequencing (WGS). At entry, the prevalence of antimicrobial resistance to amoxicillin/clavulanic acid, ampicillin, streptomycin, and trimethoprim/sulfamethoxazole was very low (0.7%, each). At the exit, the resistance prevalence was moderate to tetracycline (17.8%) and low to ampicillin (5.4%), streptomycin (4.7%), and sulfisoxazole (3.9%). The most common AMR genes observed in phenotypically resistant isolates were tet(B) (43.2%), aph(3″)-Ib and aph(6)-Id (32.4%), blaTEM-1B, and sul2 (24.3%, each), which are responsible for resistance to tetracyclines, aminoglycosides, β-lactams, and sulfonamides, respectively. The ESBL-producing E. coli were recovered from one sample (0.7%) obtained at entry and six samples (4.0%) at the exit. The ESBL-producing E. coli harbored blaTEM (29.7%), blaCTX m (13.5%), and blaCMY (5.4%). The resistance phenotypes were highly correlated with resistance genotypes (r ≥ 0.85: p < 0.05). This study demonstrated that E. coli isolated from feedlot beef cattle can harbour AMR genes, but the low incidence of medically important resistance reflected the prudent antimicrobial use in the Australian industry.
The extent of similarity between E. faecium strains found in healthy feedlot beef cattle and those causing extraintestinal infections in humans is not yet fully understood. This study used whole-genome sequencing to analyse the antimicrobial resistance profile of E. faecium isolated from beef cattle (n = 59) at a single feedlot and compared them to previously reported Australian isolates obtained from pig (n = 60) and meat chicken caecal samples (n = 8), as well as human sepsis cases (n = 302). The E. faecium isolated from beef cattle and other food animal sources neither carried vanA/vanB responsible for vancomycin nor possessed gyrA/parC and liaR/liaS gene mutations associated with high-level fluoroquinolone and daptomycin resistance, respectively. A small proportion (7.6%) of human isolates clustered with beef cattle and pig isolates, including a few isolates belonging to the same sequence types ST22 (one beef cattle, one pig, and two human isolates), ST32 (eight beef cattle and one human isolate), and ST327 (two beef cattle and one human isolate), suggesting common origins. This provides further evidence that these clonal lineages may have broader host range but are unrelated to the typical hospital-adapted human strains belonging to clonal complex 17, significant proportions of which contain vanA/vanB and liaR/liaS. Additionally, none of the human isolates belonging to these STs contained resistance genes to WHO critically important antimicrobials. The results confirm that most E. faecium isolated from beef cattle in this study do not pose a significant risk for resistance to critically important antimicrobials and are not associated with current human septic infections.
Antimicrobial resistance (AMR) is an emerging global concern, with the widespread use of antimicrobials in One Health contributing significantly to this phenomenon. Among various antimicrobials, tetracyclines are extensively used in the beef cattle industry, potentially contributing to the development of resistance in bacterial populations. This meta-analysis aimed to examine the association between tetracycline use in beef cattle and the development of tetracycline resistance in Escherichia coli isolates. A comprehensive search was conducted using multiple databases to gather relevant observational studies evaluating tetracycline use and tetracycline resistance in Escherichia coli isolates from beef cattle. The rate of tetracycline resistance from each study served as the effect measure and was pooled using a random-effects model, considering possible disparities among studies. The meta-analysis of 14 prospective longitudinal studies resulted in a 0.31 prevalence of tetracycline resistance in Escherichia coli in non-intervention (no exposure), contrasting numerically elevated resistance rates in the intervention (exposed) groups of 0.53 and 0.39 in those receiving tetracyclines via feed or systemically, respectively. Despite the observed numerical differences, no statistically significant differences existed between intervention and non-intervention groups, challenging the conventional belief that antimicrobial use in livestock inherently leads to increased AMR. The findings of this study underscore the need for additional research to fully understand the complex relationship between antimicrobial use and AMR development. A considerable degree of heterogeneity across studies, potentially driven by variations in study design and diverse presentation of results, indicates the intricate and complex nature of AMR development. Further research with standardized methodologies might help elucidate the relationship between tetracycline use and resistance in Escherichia coli isolated from beef cattle.
The similarity of commensal Escherichia coli isolated from healthy cattle to antimicrobial-resistant bacteria causing extraintestinal infections in humans is not fully understood. In this study, we used a bioinformatics approach based on whole genome sequencing data to determine the genetic characteristics and phylogenetic relationships among faecal Escherichia coli isolates from beef cattle (n = 37) from a single feedlot in comparison to previously analysed pig faecal (n = 45), poultry extraintestinal (n = 19), and human extraintestinal E. coli isolates (n = 40) from three previous Australian studies. Most beef cattle and pig isolates belonged to E. coli phylogroups A and B1, whereas most avian and human isolates belonged to B2 and D, although a single human extraintestinal isolate belonged to phylogenetic group A and sequence type (ST) 10. The most common E. coli sequence types (STs) included ST10 for beef cattle, ST361 for pig, ST117 for poultry, and ST73 for human isolates. Extended-spectrum and AmpC β-lactamase genes were identified in seven out of thirty-seven (18.9%) beef cattle isolates. The most common plasmid replicons identified were IncFIB (AP001918), followed by IncFII, Col156, and IncX1. The results confirm that feedlot cattle isolates examined in this study represent a reduced risk to human and environmental health with regard to being a source of antimicrobial-resistant E. coli of clinical importance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.