Random refraction occurs in turbulence and through a wavy water-air interface. It creates distortion that changes in space, time and with viewpoint. Localizing objects in three dimensions (3D) despite this random distortion is important to some predators and also to submariners avoiding the salient use of periscopes. We take a multiview approach to this task. Refracted distortion statistics induce a prob-abilistic relation between any pixel location and a line of sight in space. Measurements of an object's random projection from multiple views and times lead to a likelihood function of the object's 3D location. The likelihood leads to estimates of the 3D location and its uncertainty. Furthermore, multiview images acquired simultaneously in a wide stereo baseline have uncorrelated distortions. This helps reduce the acquisition time needed for localization. The method is demonstrated in stereoscopic video sequences, both in a lab and a swimming pool.
Underwater, natural illumination typically varies strongly temporally and spatially. The reason is that waves on the water surface refract light into the water in a spatiotemporally varying manner. The resulting underwater illumination field forms a caustic network and is known as flicker. This work shows that caustics can be useful for stereoscopic vision, naturally leading to range mapping of the scene. Range triangulation by stereoscopic vision requires the determination of correspondence between image points in different viewpoints, which is often a difficult problem. We show that the spatiotemporal caustic pattern very effectively establishes stereo correspondences. Thus, we term the use of this effect as CauStereo. The temporal radiance variations due to flicker are unique to each object point, thus disambiguating the correspondence, with very simple calculations. Theoretical limitations of the method are analyzed using ray-tracing simulations. The method is demonstrated by underwater in situ experiments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.