Light irradiation onto a semiconductor generates heat; however, its electronic structure under high temperature has not yet been well investigated. In this study, we have carefully examined the temperature dependence on the bandgap of simple metal oxides, which are well-known photocatalysts, i.e., TiO2, CeO2, Nb2O5, SnO2 Ta2O5, WO3, ZnO, and ZrO2, using operando UV–visible spectroscopy under controlled temperature (from room temperature to 500 °C). Consequently, a linear decrease in bandgap was seen as a function of temperature with a different slope for each semiconductor. We found that the slope was dependent on the bonding distance between metal and oxygen. This finding is essential to develop a photocatalyst used under the condition involving photo-thermal effect.
Dry reforming of methane (DRM) is one of the most attractive chemical reactions, since it converts global‐warming gases into valuable syngas including hydrogen and carbon monoxide. Numerous previous studies used metal oxides catalysis supports, such as Al2O3, but their operating temperature was very high and severe coking occurred and deteriorated their catalytic activities. The present study reports that a metal carbide like tantalum carbide (TaC) acts as a multifunctional catalyst support for the DRM reaction, including light‐harvesting properties for saving energy operation as well as an anticoking property for long‐term stability. Nickel nanoparticles loaded on tantalum carbide (Ni/TaC) are prepared by impregnation and reductive hydrogen treatment. TaC particles act as a light‐harvesting support to promote the DRM reaction by photon irradiation through plasmonic photothermal energy conversion in TaC. Furthermore, Ni/TaC exhibits an excellent long‐term anticoking property, as compared to Ni loaded on conventional metal oxide supports such as Al2O3 or Ta2O5. According to the sole gas condition's experiment, and secondary ion mass spectroscopy, the oxy‐carbide layer near the interface between TaC and Ni plays an essential role in imparting the efficient anticoking property of Ni/TaC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.