This study confirmed the complex pathophysiology of COPD-related osteoporosis, including the influence of gender, clinical phenotype and genetic factors.
Identifying the host genetic factors underlying severe COVID-19 is an emerging challenge1–5. Here we conducted a genome-wide association study (GWAS) involving 2,393 cases of COVID-19 in a cohort of Japanese individuals collected during the initial waves of the pandemic, with 3,289 unaffected controls. We identified a variant on chromosome 5 at 5q35 (rs60200309-A), close to the dedicator of cytokinesis 2 gene (DOCK2), which was associated with severe COVID-19 in patients less than 65 years of age. This risk allele was prevalent in East Asian individuals but rare in Europeans, highlighting the value of genome-wide association studies in non-European populations. RNA-sequencing analysis of 473 bulk peripheral blood samples identified decreased expression of DOCK2 associated with the risk allele in these younger patients. DOCK2 expression was suppressed in patients with severe cases of COVID-19. Single-cell RNA-sequencing analysis (n = 61 individuals) identified cell-type-specific downregulation of DOCK2 and a COVID-19-specific decreasing effect of the risk allele on DOCK2 expression in non-classical monocytes. Immunohistochemistry of lung specimens from patients with severe COVID-19 pneumonia showed suppressed DOCK2 expression. Moreover, inhibition of DOCK2 function with CPYPP increased the severity of pneumonia in a Syrian hamster model of SARS-CoV-2 infection, characterized by weight loss, lung oedema, enhanced viral loads, impaired macrophage recruitment and dysregulated type I interferon responses. We conclude that DOCK2 has an important role in the host immune response to SARS-CoV-2 infection and the development of severe COVID-19, and could be further explored as a potential biomarker and/or therapeutic target.
BackgroundIn multidrug regimens, including an intravenous aminoglycoside (e.g. amikacin [AMK]) is recommended for difficult-to-treat non-tuberculous mycobacterial (NTM) lung diseases. We aimed to evaluate the efficacy, safety, and feasibility of inhaled AMK therapy in patients with difficult-to-treat NTM lung diseases in a retrospective chart review.MethodsThe study population consisted of patients with NTM lung diseases who received combination therapy, including inhaled AMK therapy, at Keio University Hospital (Tokyo, Japan), from January 2014 through May 2016. A total of 26 cases, consisting of 23 Mycobacterium avium complex (MAC) and three Mycobacterium abscessus complex (MABC) infections cases, were included in this study. The efficacy, safety, and feasibility of inhaled AMK therapy were retrospectively investigated. The Research Ethics Committee of Keio University Hospital approved this study, and informed consent was obtained from all patients.ResultsAll 26 patients were culture-positive at enrolment. Twenty-three of the 26 patients (88.5%), including 21/23 MAC patients (91.3%) and 2/3 MABC patients (66.7%), were administered inhaled AMK therapy for >3 months. The proportion of patients who had clinical symptoms, including, cough and sputum, declined after inhalation AMK therapy. Ten of the 23 patients (43.5%) who received AMK inhalation, including 8/21 MAC (38.1%) and 2/2 MABC patients (100%), showed sputum conversion, defined as at least three consecutive negative sputum cultures. Seven of the 23 patients, including, 5/21 MAC and 2/2 MABC patients, showed improvements in high-resolution computed tomography imaging of the chest. In addition, the serum AMK trough levels before the second inhalation were <1.2 μg/mL in all 26 patients, with no occurrence of severe adverse events, such as renal toxicity. One patient (3.8%) experienced auditory toxicity, in the form of tinnitus. However, this symptom was reversible, after temporary interruption of AMK, the patient was able to safely resume the therapy.ConclusionsInhaled AMK therapy is an effective and feasible therapy for difficult-to-treat NTM lung disease.Electronic supplementary materialThe online version of this article (doi:10.1186/s12879-017-2665-5) contains supplementary material, which is available to authorized users.
Increasing evidence suggests that mesenchymal stem cells (MSCs) play anti-inflammatory roles during innate immune responses. However, little is known about the effect of MSCs or their secretions on the ligand response of Toll-like receptor (TLR) 7 and TLR8, receptors that recognize viral single-stranded RNA (ssRNA). Macrophages play a critical role in the innate immune response to ssRNA virus infection; therefore, we investigated the effect of MSC-conditioned medium on cytokine expression in macrophages following stimulation with TLR7/8 ligands. After stimulation with TLR7/8 ligand, bone marrow-derived macrophages cultured with MSCs or in MSC-conditioned medium expressed lower levels of tumor necrosis factor (TNF) α and interleukin (IL) 6 and higher levels of IL-10 compared to macrophages cultured without MSCs or in control medium, respectively. The modulations of cytokine expression were associated with prostaglandin E2 (PGE2) secreted by the MSCs. PGE2 enhanced extracellular signal-related kinase (ERK) signaling and suppressed nuclear factor-κB (NF-κB) signaling. Enhanced ERK signaling contributed to enhanced IL-10 production, and suppression of NF-κB signaling contributed to the low production of TNF-α. Collectively, these results indicate that MSCs and MSC-conditioned medium modulate the cytokine expression profile in macrophages following TLR7/8-mediated stimulation, which suggests that MSCs play an immunomodulatory role during ssRNA virus infection.
Increased CXC chemokine levels in the airspaces may be associated with emphysematous lung changes in patients with pulmonary fibrosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.