We discovered that a silicon-on-insulator photonic crystal waveguide whose lattice is shifted along the waveguide generates wideband, low-dispersion, slow light with excellent reproducibility. We observed delayed transmission of picosecond optical pulses, as well as two-photon absorption and self-phase modulation enhanced by a high internal light intensity in the slow-light regime.
We demonstrate ultrafast delay tuning of a slow-light pulse with a response time <10 ps. This is achieved using two types of slow light: dispersion-compensated slow light for the signal pulse, and low-dispersion slow light to enhance nonlinear effects of the control pulse. These two types of slow light are generated simultaneously in Si lattice-shifted photonic crystal waveguides, arising from flat and straight photonic bands, respectively. The control pulse blueshifts the signal pulse spectrum, through dynamic tuning caused by the plasma effect of two-photon-absorption-induced carriers. This changes the delay by up to 10 ps only when the two pulses overlap within the waveguide and enables ultrafast tuning that is not limited by the carrier lifetime. Using this, we succeeded in tuning the delay of one target pulse within a pulse train with 12 ps intervals.
We report on the fabrication of chalcogenide glass (Ag-As(2)Se(3)) photonic crystal waveguides and the first detailed characterization of the linear and nonlinear optical properties. The waveguides, fabricated by e-beam lithography and ICP etching exhibit typical transmission spectra of photonic crystal waveguides, and exhibit high optical nonlinearity. Nonlinear phase shift of 1.5pi through self-phase modulation is observed at 0.78 W input peak power in a 400 microm long device. The effective nonlinear parameter gamma(eff) estimated from this result reaches 2.6 x 10(4) W(-1)m(-1). Four-wave mixing is also observed in the waveguide, while two-photon absorption at optical communication wavelengths is sufficiently small and the corresponding figure of merit is larger than 11.
Slow light with a markedly low group velocity is a promising solution for optical buffering and advanced time-domain optical signal processing. It is also anticipated to enhance linear and nonlinear effects and so miniaturize functional photonic devices because slow light compresses optical energy in space. Photonic crystal waveguide devices generate on-chip slow light at room temperature with a wide bandwidth and low dispersion suitable for short pulse transmission. This paper first explains the delay-bandwidth product, fractional delay, and tunability as crucial criteria for buffering capacity of slow light devices. Then the paper describes experimental observations of slow light pulse, exhibiting their record high values. It also demonstrates the nonlinear enhancement based on slow light pulse transmission.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.