Robot navigation is an indispensable component of any mobile service robot. Many path planning algorithms generate a path which has many sharp or angular turns. Such paths are not fit for mobile robot as it has to slow down at these sharp turns. These robots could be carrying delicate, dangerous, or precious items and executing these sharp turns may not be feasible kinematically. On the contrary, smooth trajectories are often desired for robot motion and must be generated while considering the static and dynamic obstacles and other constraints like feasible curvature, robot and lane dimensions, and speed. The aim of this paper is to succinctly summarize and review the path smoothing techniques in robot navigation and discuss the challenges and future trends. Both autonomous mobile robots and autonomous vehicles (outdoor robots or self-driving cars) are discussed. The state-of-the-art algorithms are broadly classified into different categories and each approach is introduced briefly with necessary background, merits, and drawbacks. Finally, the paper discusses the current and future challenges in optimal trajectory generation and smoothing research.
Line detection is an important problem in computer vision, graphics and autonomous robot navigation. Lines detected using a laser range sensor (LRS) mounted on a robot can be used as features to build a map of the environment, and later to localize the robot in the map, in a process known as Simultaneous Localization and Mapping (SLAM). We propose an efficient algorithm for line detection from LRS data using a novel hopping-points Singular Value Decomposition (SVD) and Hough transform-based algorithm, in which SVD is applied to intermittent LRS points to accelerate the algorithm. A reverse-hop mechanism ensures that the end points of the line segments are accurately extracted. Line segments extracted from the proposed algorithm are used to form a map and, subsequently, LRS data points are matched with the line segments to localize the robot. The proposed algorithm eliminates the drawbacks of pointbased matching algorithms like the Iterative Closest Points (ICP) algorithm, the performance of which degrades with an increasing number of points. We tested the proposed algorithm for mapping and localization in both simulated and real environments, and found it to detect lines accurately and build maps with good self-localization.
Map generation by a robot in a cluttered and noisy environment is an important problem in autonomous robot navigation. This paper presents algorithms and a framework to generate 2D line maps from laser range sensor data using clustering in spatial (Euclidean) and Hough domains in noisy environments. The contributions of the paper are: (1) it shows the applicability of density-based clustering methods and mathematical morphological techniques generally used in image processing for noise removal from laser range sensor data; (2) it presents a new algorithm to generate straight-line maps by applying clustering in the spatial domain; (3) it presents a new algorithm for robot mapping using clustering in a Hough domain; and (4) it presents a new framework to load, delete, install or update appropriate kernels in the robot remotely from the server. The framework provides a means to select the most appropriate kernel and fine-tune its parameters remotely from the server based on online feedback, which proves to be very efficient in dynamic environments with noisy conditions. The accuracy and performance of the techniques presented in this paper are discussed with conventional line segment-based EKF-SLAM and the results are compared.
The dynamic processes of a flexible manipulator consist of flexible and rigid motion components. The dynamic equations expressing the motion can be divided into two corresponding subsets, and a decomposed dynamic control (DDC) is proposed for the design of a controller for a flexible manipulator. The DDC is composed of flexible dynamic control and rigid dynamic control: the flexible dynamic control involves developing a desired trajectory through considerations of the physical properties of the device based on a feed-forward strategy; the rigid dynamic control aims at tracking the desired trajectory based on a feedback strategy. This report mainly investigates the flexible dynamic control which searches for a desired trajectory considering nonlinearity. An optimization method applying the Nelder-Mead simplex (NM) algorithm is proposed to obtain the desired trajectory. Numerical simulation and experimental results show that the optimization can deal with the extremely nonlinear problems. Additionally, the conclusion that optimization is strongly dependent on the accuracy of the model is possible, for further research, a more robust controller will be investigated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.