In [4], Keen and Series analysed the theory of pleating coordinates in the context of the Riley slice of Schottky space R, the deformation space of a genus two handlebody generated by two parabolics. This theory aims to give a complete description of the deformation space of a holomorphic family of Kleinian groups in terms of the bending lamination of the convex hull boundary of the associated three manifold. In this note, we review the present status of the theory and discuss more carefully than in [4] the enumeration of the possible bending laminations for R, complicated in this case by the fact that the associated three manifold has compressible boundary. We correct two complementary errors in [4], which arose from subtleties of the enumeration, in particular showing that, contrary to the assertion made in [4], the pleating rays, namely the loci in R in which the projective measure class of the bending lamination is fixed, have two connected components.
L'accès aux archives de la revue « Annales de la faculté des sciences de Toulouse » (http://picard.ups-tlse.fr/ ∼ annales/), implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/legal.php). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright. Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ (*) Recu le 27 octobre 1999, accepté le 28 fevrier 2001 (1)
Abstract. We construct an explicit example of a geometrically finite Kleinian group G with invariant component Ω in the Riemann sphereĈ such that any quasiconformal map from Ω to the boundary of the convex hull ofĈ − Ω in H 3 which extends to the identity map on their common boundary inĈ, and which is equivariant under the group of Möbius transformations preserving Ω, must have maximal dilatation K > 2.002.
We present a computer-oriented method of producing pictures of Bers embeddings of the Teichmüller space of once-punctured tori. The coordinate plane is chosen in such a way that the accessory parameter is hidden in the relative position of the origin. Our algorithm consists of two steps. For each point in the coordinate plane, we first compute the corresponding monodromy representation by numerical integration along certain loops. Then we decide whether the representation is discrete by applying Jørgensen's theory on the quasi-Fuchsian space of once-punctured tori.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.