To establish a histopathological scoring system for changes in subchondral bone in murine models of knee osteoarthritis (OA), three key parameters, subchondral bone plate (Subcho.BP) consisting of the combination of Subcho.BP.thickness (Subcho.BP.Th) and angiogenesis, bone volume (BV/TV) and osteophytes, were selected. The new grading system was tested in two mouse OA models, (1) senescence accelerated mouse (SAM)-prone 8 (SAMP8) as spontaneous OA model with SAM-resistant 1 (SAMR1) as control; (2) destabilization of the medial meniscus in C57BL/6 mice as surgical OA model. Results of the spontaneous OA model showed that Subcho.BP.Th was significantly wider, angiogenesis was greater, and BV/TV was higher in SAMP8 than SAMR1. Notably, subchondral bone score was dramatically higher in SAMP8 at 6 weeks than SAMR1, while OARSI cartilage scores became higher only at 14 weeks. In the surgical OA model, the results were similar to the spontaneous OA model, but osteophytes appeared earlier. There were strong correlations both in Subcho.BP.Th and BV/TV between this scoring system and µCT (r = 0.89, 0.84, respectively). Inter-rater reliabilities for each parameter using this system were more than 0.943. We conclude that this new histopathological scoring system is readily applicable for evaluating the early changes in aging and OA-affected murine subchondral bone.
The therapeutic potential of mesenchymal stem cell (MSC)-derived extracellular vesicles (EVs) for various diseases and tissue repair is attracting attention. Here, EVs from conditioned medium of human bone marrow MSCs at passage 5 (P5) and passage 12 (P12) were analysed using mouse Achilles tendon rupture model and lectin microarray. P5 MSC-EVs accelerated Achilles tendon healing compared with P12 MSC-EVs. Fucose-specific lectin TJA-II was indicated as a glycan marker for therapeutic MSC-EVs. The present study demonstrated that early passaged MSC-EVs promote Achilles tendon healing compared with senescent MSC-EVs. Glycans on MSC-EVs might provide useful tools to establish a quality control and isolation system for therapeutic MSC-EVs in regenerative medicine.
The infiltration of macrophages into adipose tissue and their interaction with adipocytes are essential for the chronic low-grade inflammation of obese adipose tissue. In this study, we identified the serum amyloid A3 (Saa3) gene as a key adipocyte-derived factor that is affected by interaction with macrophages. We showed that the Saa3 promoter in adipocytes actually responds to activated macrophages in a co-culture system. Decreasing C/EBPβ abundance in 3T3-L1 adipocytes or point mutation of C/EBPβ elements suppressed the increased promoter activity in response to activated macrophages, suggesting an essential role of C/EBPβ in Saa3 promoter activation. Bioluminescence based on Saa3 promoter activity in Saa3-luc mice was promoted in obese adipose tissue, showing that Saa3 promoter activity is most likely related to macrophage infiltration. This study suggests that the level of expression of the Saa3 gene could be utilized for the number of infiltrated macrophages in obese adipose tissue.
Macrophage infiltration into adipose tissue is associated with obesity and the crosstalk between adipocytes and infiltrated macrophages has been investigated as an important pathological phenomenon during adipose tissue inflammation. Here, we sought to identify adipocyte mRNAs that are regulated by interaction with infiltrated macrophages in vivo. An anti-inflammatory vitamin, vitamin B6, suppressed macrophage infiltration into white adipose tissue and altered mRNA expression. We identified >3500 genes whose expression is significantly altered during the development of obesity in db/db mice, and compared them to the adipose tissue mRNA expression profile of mice supplemented with vitamin B6. We identified PTX3 and MMP3 as candidate genes regulated by macrophage infiltration. PTX3 and MMP3 mRNA expression in 3T3-L1 adipocytes was up-regulated by activated RAW264.7 cells and these mRNA levels were positively correlated with macrophage number in adipose tissue in vivo. Next, we screened adipose genes down-regulated by the interaction with macrophages, and isolated RASSF6 (Ras association domain family 6). RASSF6 mRNA in adipocytes was decreased by culture medium conditioned by activated RAW264.7 cells, and RASSF6 mRNA level was negatively correlated with macrophage number in adipose tissue, suggesting that adipocyte RASSF6 mRNA expression is down-regulated by infiltrated macrophages in vivo. Finally, this study also showed that decreased RASSF6 expression up-regulates mRNA expression of several genes, such as CD44 and high mobility group protein HMGA2. These data provide novel insights into the biological significance of interactions between adipocytes and macrophages in adipose tissue during the development of obesity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.