Axon guidance proteins are critical for the correct wiring of the nervous system during development. Several axon guidance cues and their family members have been well characterized. More unidentified axon guidance cues are assumed to participate in the formation of the extremely complex nervous system. We identified a secreted protein, draxin, that shares no homology with known guidance cues. Draxin inhibited or repelled neurite outgrowth from dorsal spinal cord and cortical explants in vitro. Ectopically expressed draxin inhibited growth or caused misrouting of chick spinal cord commissural axons in vivo. draxin knockout mice showed defasciculation of spinal cord commissural axons and absence of all forebrain commissures. Thus, draxin is a previously unknown chemorepulsive axon guidance molecule required for the development of spinal cord and forebrain commissures.
In insects, there are two different modes of segmentation. In the higher dipteran insects (like Drosophila), their segmentation takes place almost simultaneously in the syncytial blastoderm. By contrast, in the orthopteran insects (like Schistocerca (grasshopper)), the anterior segments form almost simultaneously in the cellular blastoderm and then the remaining posterior part elongates to form segments sequentially from the posterior proliferative zone. Although most of their orthologues of the Drosophila segmentation genes may be involved in their segmentation, little is known about their roles. We have investigated segmentation processes of Gryllus bimaculatus, focusing on its orthologues of the Drosophila segment-polarity genes, G. bimaculatus wingless (Gbwg), armadillo (Gbarm) and hedgehog (Gbhh). Gbhh and Gbwg were observed to be expressed in the each anterior segment and the posterior proliferative zone. In order to know their roles, we used RNA interference (RNAi). We could not observed any significant effects of RNAi for Gbwg and Gbhh on segmentation, probably due to functional replacement by another member of the corresponding gene families. Embryos obtained by RNAi for Gbarm exhibited abnormal anterior segments and lack of the abdomen. Our results suggest that GbWg/GbArm signaling is involved in the posterior sequential segmentation in the G. bimaculatus embryos, while Gbwg, Gbarm and Gbhh are likely to act as the segment-polarity genes in the anterior segmentation similarly as in Drosophila.
Although the molecular mechanisms directing anteroposterior patterning of the Drosophila embryo (long-germband mode) are well understood, how these mechanisms were evolved from an ancestral mode of insect embryogenesis remains largely unknown. In order to gain insight into mechanisms of evolution in insect embryogenesis, we have examined the expression and function of the orthologue of Drosophila caudal (cad) in the intermediate-germband cricket Gryllus bimaculatus. We observed that a posterior (high) to anterior (low) gradient in the levels of Gryllus bimaculatus cad (Gb' cad) transcript was formed in the early-stage embryo, and then Gb' cad was expressed in the posterior growth zone until the posterior segmentation was completed. Reduction of Gb' cad expression level by RNA interference resulted in deletion of the gnathum, thorax, and abdomen in embryos, remaining only anterior head. We found that the gnathal and thoracic segments are formed by Gb' cad probably through the transcriptional regulation of gap genes including Gb' hunchback and Gb' Kruppel. Furthermore, Gb' cad was found to be involved in the posterior elongation, acting as a downstream gene in the Wingless/Armadillo signalling pathways. These findings indicate that Gb' cad does not function as it does in Drosophila, suggesting that regulatory and functional changes of cad occurred during insect evolution. Since Wnt/Cdx pathways are involved in the posterior patterning of vertebrates, such mechanisms may be conserved in animals that undergo sequential segmentation from the posterior growth zone.
To understand the mechanism of regeneration, many experiments have been carried out with hemimetabolous insects, since their nymphs possess the ability to regenerate amputated legs. We first succeeded in observing expression patterns of hedgehog, wingless (wg), and decapentaplegic (dpp) during leg regeneration of the cricket Gryllus bimaculatus. The observed expression patterns were essentially consistent with the predictions derived from the boundary model modified by Campbell and Tomlinson (CTBM). Thus, we concluded that the formation of the proximodistal axis of a regenerating leg is triggered at a site where ventral wg-expressing cells abut dorsal dpp-expressing cells in the anteroposterior (A/P) boundary, as postulated in the CTBM.
In short and intermediate germ insects, only the anterior segments are specified during the blastoderm stage, leaving the posterior segments to be specified later, during embryogenesis, which differs from the segmentation process in Drosophila, a long germ insect. To elucidate the segmentation mechanisms of short and intermediate germ insects, we have investigated the orthologs of the Drosophila segmentation genes in a phylogenetically basal, intermediate germ insect, Gryllus bimaculatus(Gb). Here, we have focused on its hunchback ortholog(Gb'hb), because Drosophila hb functions as a gap gene during anterior segmentation, referred as a canonical function. Gb'hb is expressed in a gap pattern during the early stages of embryogenesis, and later in the posterior growth zone. By means of embryonic and parental RNA interference for Gb'hb, we found the following: (1) Gb'hb regulates Hox gene expression to specify regional identity in the anterior region, as observed in Drosophila and Oncopeltus; (2) Gb'hb controls germband morphogenesis and segmentation of the anterior region, probably through the pair-rule gene, even-skipped at least; (3) Gb'hb may act as a gap gene in a limited region between the posterior of the prothoracic segment and the anterior of the mesothoracic segment; and (4) Gb'hb is involved in the formation of at least seven abdominal segments, probably through its expression in the posterior growth zone, which is not conserved in Drosophila. These findings suggest that Gb'hb functions in a non-canonical manner in segment patterning. A comparison of our results with the results for other derived species revealed that the canonical hbfunction may have evolved from the non-canonical hb functions during evolution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.