Abstract. Fatigue damage behavior under repeated electric loading was investigated on two kinds of PZT ceramics with discontinuous electrodes. Intergranular cracking was observed at the electrode edge in soft PZT under electric fields greater than ±400 V/mm. However, under the same loading conditions, no damage was observed in hard PZT. When cracking occurred, permittivity of specimens decreased with the number of cycles corresponding to the amount of mechanical damage. FEM analyses of the electroelastic field of the specimens showed that cracking due to cyclic electric loading was related to 180˚ domain switching caused by concentrated electroelastic field.
Abstract. Fatigue damage behavior under repeated electric loading was investigated on two kinds of PZT ceramics with discontinuous electrodes. Intergranular cracking was observed at the electrode edge in soft PZT under electric fields greater than ±400 V/mm. However, under the same loading conditions, no damage was observed in hard PZT. When cracking occurred, permittivity of specimens decreased with the number of cycles corresponding to the amount of mechanical damage. FEM analyses of the electroelastic field of the specimens showed that cracking due to cyclic electric loading was related to 180˚ domain switching caused by concentrated electroelastic field.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.