Hydrogen produced from water using photocatalysts driven by sunlight is a sustainable way to overcome the intermittency issues of solar power and provide a green alternative to fossil fuels. TiO2 has been used as a photocatalyst since the 1970s due to its low cost, earth abundance, and stability. There has been a wide range of research activities in order to enhance the use of TiO2 as a photocatalyst using dopants, modifying the surface, or depositing noble metals. However, the issues such as wide bandgap, high electron-hole recombination time, and a large overpotential for the hydrogen evolution reaction (HER) persist as a challenge. Here, we review state-of-the-art experimental and theoretical research on TiO2 based photocatalysts and identify challenges that have to be focused on to drive the field further. We conclude with a discussion of four challenges for TiO2 photocatalysts—non-standardized presentation of results, bandgap in the ultraviolet (UV) region, lack of collaboration between experimental and theoretical work, and lack of large/small scale production facilities. We also highlight the importance of combining computational modeling with experimental work to make further advances in this exciting field.
Electrochemical energy storage has attracted much attention due to the common recognition of sustainable energy development.
Transition metal chalcogenides have intensively focused on photocatalytic hydrogen production for a decade due to their stronger edge and the quantum confinement effect. This work mainly focuses on synthesis and hydrogen production efficiencies of cobalt disulfide (CoS2)-embedded TiO2 nanocomposites. Materials are synthesized by using a hydrothermal approach and the hydrogen production efficiencies of pristine CoS2, TiO2 nanoparticles and CoS2/TiO2 nanocomposites are compared under UV irradiation. A higher amount of hydrogen production (2.55 mmol g−1) is obtained with 10 wt.% CoS2/TiO2 nanocomposite than pristineTiO2 nanoparticles, whereas no hydrogen production was observed with pristine CoS2 nanoparticles. This result unveils that the metal dichalcogenide–CoS2 acts as an effective co-catalyst and nanocrystalline TiO2 serves as an active site by effectively separating the photogenerated electron–hole pair. This study lays down a new approach for developing transition metal dichalcogenide materials with significant bandgaps that can effectively harness solar energy for hydrogen production.
Titanium dioxide (TiO2) is a commonly used wide bandgap semiconductor material for energy and environmental applications. Although it is a promising candidate for photovoltaic and photocatalytic applications, its overall performance is still limited due to low mobility of porous TiO2 and its limited spectral response. This limitation can be overcome by several ways, one of which is doping that could be used to improve the light harvesting properties of TiO2 by tuning its bandgap. TiO2 doped with elements, such as alkali-earth metals, transition metals, rare-earth elements, and nonmetals, were found to improve its performance in the photovoltaic and photocatalytic applications. Among the doped TiO2 nanomaterials, transition metal doped TiO2 nanomaterials perform efficiently by suppressing the relaxation and recombination of charge carriers and improving the absorption of light in the visible region. This work reports the possibility of enhancing the performance of TiO2 towards Dye Sensitised Solar Cells (DSSCs) and photocatalytic degradation of methylene blue (MB) by employing Zn doping on TiO2 nanomaterials. Zn doping was carried out by varying the mole percentage of Zn on TiO2 by a facile solvothermal method and the synthesized nanomaterials were characterised. The XRD (X-Ray Diffraction) studies confirmed the presence of anatase phase of TiO2 in the synthesized nanomaterials, unaffected by Zn doping. The UV-Visible spectrum of Zn-doped TiO2 showed a red shift which could be attributed to the reduced bandgap resulted by Zn doping. Significant enhancement in Power Conversion Efficiency (PCE) was observed with 1.0 mol% Zn-doped TiO2 based DSSC, which was 35% greater than that of the control device. In addition, it showed complete degradation of MB within 3 h of light illumination and rate constant of 1.5466×10−4s−1 resembling zeroth order reaction. These improvements are attributed to the reduced bandgap energy and the reduced charge recombination by Zn doping on TiO2.
Earth–abundant transition metal chalcogenide materials are of great research interest for energy production and environmental remediation, as they exhibit better photocatalytic activity due to their suitable electronic and optical properties. This study focuses on the photocatalytic activity of flower-like SnS2 nanoparticles (composed of nanosheet subunits) embedded in TiO2 synthesized by a facile hydrothermal method. The materials were characterized using different techniques, and their photocatalytic activity was assessed for hydrogen evolution reaction and the degradation of methylene blue. Among the catalysts studied, 10 wt. % of SnS2 loaded TiO2 nanocomposite shows an optimum hydrogen evolution rate of 195.55 µmolg−1, whereas 15 wt. % loading of SnS2 on TiO2 exhibits better performance against the degradation of methylene blue (MB) with the rate constant of 4.415 × 10−4 s−1 under solar simulated irradiation. The improved performance of these materials can be attributed to the effective photo-induced charge transfer and reduced recombination, which make these nanocomposite materials promising candidates for the development of high-performance next-generation photocatalyst materials. Further, scavenging experiments were carried out to confirm the reactive oxygen species (ROS) involved in the photocatalytic degradation. It can be observed that there was a 78% reduction in the rate of degradation when IPA was used as the scavenger, whereas around 95% reduction was attained while N2 was used as the scavenger. Notably, very low degradation (<5%) was attained when the dye alone was directly under solar irradiation. These results further validate that the •OH radical and the superoxide radicals can be acknowledged for the degradation mechanism of MB, and the enhancement of degradation efficiency may be due to the combined effect of in situ dye sensitization during the catalysis and the impregnation of low bandgap materials on TiO2.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.