Abstract. Few studies have examined apoptosis induced by low-voltage electric pulses (LVEPs). LVEP-induce changes in membrane potential that are below the membrane breakdown threshold and increase membrane permeability without electroporation (pore formation) through the transport of extracellular substances via phagocytosis. We demonstrated that propidium iodide uptake and apoptosis increased in accordance with the duration and number of LVEPs in B16 cells, which showed relatively good viability under mild electric field conditions. We showed that LVEP-induced apoptosis was achieved through caspase-8 and -9 activation and subsequent caspase-3 activation. Long-duration LVEPs caused only mild cell damage, such that the apoptosis ratio (apoptosis/total cell death) in electric pulse-treated cells was similar to that in non-treated control cells. To assess the relative degree of caspase dependency in LVEP-induced apoptosis, the apoptosis rate and caspase-3 activity were analyzed using a pan-caspase inhibitor (Z-VAD-FMK). Z-VAD-FMK treatment inhibited, but did not abolish, LVEP-induced apoptosis, indicating that caspases other than caspase-3 participate in this pathway. Moreover, LVEP treatment inhibited cell growth, suggesting that LVEP treatment may be a valuable anticancer therapy. Although the mechanism of LVEP-induced apoptosis remains unclear, it may be related to dysfunctional membrane transport of Ca 2+ and other extracellular substances involved in caspase activation.
Over the past few decades, a large number of novel numerical methods have been proposed to analyze blood flows and to understand the relationship between vascular diseases and hemodynamics. In this paper, we review recent computational fluid dynamics studies on macroscale hemodynamics such as blood flow in the heart and large arteries, microscale blood flows in small vessels in which blood is assumed to be a suspension of red blood cells in plasma, and single red blood cell motions in an induced flow field. The advantages and disadvantages of numerical methods are discussed, and current trends in these research fields are introduced.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.