2General Relativity predicts that a star passing close to a supermassive black hole should exhibit a relativistic redshift. We test this using observations of the Galactic center star S0-2. We combine existing spectroscopic and astrometric measurements from 1995-2017, which cover S0-2's 16-year orbit, with measurements in 2018 March to September which cover three events during its closest approach to the black hole. We detect the combination of special relativistic-and gravitational-redshift, quantified using a redshift parameter, Υ. Our result, Υ = 0.88 ± 0.17, is consistent with General Relativity (Υ = 1) and excludes a Newtonian model (Υ = 0 ) with a statistical significance of 5 σ.General Relativity (GR) has been thoroughly tested in weak gravitational fields in the Solar System (1), with binary pulsars (2) and with measurements of gravitational waves from stellarmass black-hole binaries (3,4). Observations of short-period stars in our Galactic center (GC) (5-8) allow GR to be tested in a different regime (9): the strong field near a supermassive black hole (SMBH) (10,11). The star S0-2 (also known as S2) has a 16 year orbit around Sagittarius A* (Sgr A*), the SMBH at the center of the Milky Way. In 2018 May, it reached its point of closest approach, at a distance of 120 astronomical units (au) with a velocity reaching 2.7% of the speed of light. Within a 6 months interval of that date, the star also passed through its maximum (March) and minimum velocity (September) along the line-of-sight, spanning a range of 6000 km s −1 in radial velocity (RV - Fig. 1). We present observations of all three events and combine them with data from 1995-2017 ( Fig. 2).During 2018, the close proximity of S0-2 to the SMBH causes the relativistic redshift, which is the combination of the transverse Doppler shift from special relativity and the gravitational redshift from GR. This deviation from a Keplerian orbit was predicted to reach 200 km s −1 (Fig. 3) and is detectable with current telescopes. The GRAVITY collaboration (9) previously reported a similar measurement. Our measurements are complementary: i) we present a 3 complete set of independent measurements with 3 additional months of data, doubling the time baseline for the year of closest approach, and including the third turning point (RV minimum) in September 2018, ii) we use three different spectroscopic instruments in 2018, which allows us to probe the presence of instrumental biases, iii) we perform an analysis of the systematic errors that may arise from an experiment spanning over 20 years to test for bias in the result, and iv) we publicly release the stellar measurements and the posterior probability distributions.We use a total of 45 astrometric positional measurements (spanning 24 years) and 115 RVs (18 years) to fit the orbit of S0-2. Of these, 11 are new astrometric measurements of S0-2 from 2016 to 2018 and 28 are new RV measurements from 2017 and 2018 ( Fig 1). Astrometric measurements were obtained at the W. M. Keck Observatory using speckle imaging (a ...
We numerically construct an one-parameter family of initial data of an expanding inhomogeneous universe model which is composed of regularly aligned black holes with an identical mass. They are initial data for vacuum solutions of the Einstein equations. We call this universe model the "black hole universe" and analyze the structure of these initial data. We study the relation between the mean expansion rate of the 3-space, which corresponds to the Hubble parameter, and the mass density of black holes. The result implies that the same relation as that of the Einstein-de Sitter universe is realized in the limit of the large separation between neighboring black holes. The applicability of the cosmological Newtonian N -body simulation to the dark matter composed of black holes is also discussed. The deviation of the spatial metric of the cosmological Newtonian N -body system from that of the black hole universe is found to be smaller than about 1% in a region distant from the particles, if the separation length between neighboring particles is 20 times larger than their gravitational radius. By contrast, the deviation of the square of the Hubble parameter of the cosmological Newtonian N -body system from that of the black hole universe is about 20% for the same separation length.
We examine bound orbits of particles around singly rotating black rings. We show that there exist stable bound orbits in toroidal spiral shape near the 'axis' of the ring, and also exist stable circular orbits on the 'axis' as special cases. The stable bound orbits can have arbitrary large size if the thickness of the ring is less than a critical value.
Searching for space-time variations of the constants of Nature is a promising way to search for new physics beyond General Relativity and the standard model motivated by unification theories and models of dark matter and dark energy. We propose a new way to search for a variation of the fine-structure constant using measurements of late-type evolved giant stars from the S-star cluster orbiting the supermassive black hole in our Galactic Center. A measurement of the difference between distinct absorption lines (with different sensitivity to the fine structure constant) from a star leads to a direct estimate of a variation of the fine structure constant between the star's location and Earth. Using spectroscopic measurements of 5 stars, we obtain a constraint on the relative variation of the fine structure constant below 10 −5 . This is the first time a varying constant of Nature is searched for around a black hole and in a high gravitational potential. This analysis shows new ways the monitoring of stars in the Galactic Center can be used to probe fundamental physics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.