In the presence of a Ni(0)/NHC catalyst, an equimolar mixture of aliphatic and aryl aldehydes can be employed to selectively yield a single cross-coupled ester. This reaction can be applied to a variety of aliphatic (1°, 2°, cyc-2°, and 3°) and aryl aldehyde combinations. The reaction represents 100% atom efficiency and generates no waste. Mechanistic studies have revealed that the striking feature of the reaction is the simultaneous coordination of two aldehydes to Ni(0).
Given the growing demand for green and sustainable chemical processes, the catalytic reductive alkylation of amines with main-group catalysts of low toxicity and molecular hydrogen as the reductant would be an ideal method to functionalize amines. However, such a process remains challenging. Herein, a novel reductive alkylation system using H is presented, which proceeds via a tandem reaction that involves the B(2,6-ClCH)( p-HCF)-catalyzed formation of an imine and the subsequent hydrogenation of this imine catalyzed by a frustrated Lewis pair (FLP). This reductive alkylation reaction generates HO as the sole byproduct and directly functionalizes amines that bear a remarkably wide range of substituents including carboxyl, hydroxyl, additional amino, primary amide, and primary sulfonamide groups. The synthesis of isoindolinones and aminophthalic anhydrides has also been achieved by a one-pot process that consists of a combination of the present reductive alkylation with an intramolecular amidation and intramolecular dehydration reactions, respectively. The reaction showed a zeroth-order and a first-order dependence on the concentration of an imine intermediate and B(2,6-ClCH)( p-HCF), respectively. In addition, the reaction progress was significantly affected by the concentration of H. These results suggest a possible mechanism in which the heterolysis of H is facilitated by the FLP comprising THF and B(2,6-ClCH)( p-HCF).
Direct amination of allylic alcohols with primary and secondary amines catalyzed by a system made of [Ni(1,5-cyclooctadiene)2 ] and 1,1'-bis(diphenylphosphino)ferrocene was effectively enhanced by adding nBu4 NOAc and molecular sieves, affording the corresponding allyl amines in high yield with high monoallylation selectivity for primary amines and high regioselectivity for monosubstituted allylic alcohols. Such remarkable additive effects of nBu4 NOAc were elucidated by isolating and characterizing some nickel complexes, manifesting the key role of a charge neutral pentacoordinated η(3) -allyl acetate complex in the present system, in contrast to usual cationic tetracoordinated complexes earlier reported in allylic substitution reactions.
N-Phosphine oxide substituted imidazolylidenes (PoxIms) have been synthesized and fully characterized. These species can undergo significant changes to the spatial environment surrounding their carbene center through rotation of the phosphine oxide moiety. Either classical Lewis adducts (CLAs) or frustrated Lewis pairs (FLPs) are thus formed with B(C6F5)3 depending on the orientation of the phosphine oxide group. A strategy to reactivate FLPs from CLAs by exploiting molecular motions that are responsive to external stimuli has therefore been developed. The reactivation conditions were successfully controlled by tuning the strain in the PoxIm–B(C6F5)3 complexes so that reactivation only occurred above ambient temperature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.