In this paper, an autonomous aerial robot system with a multirotor mechanism is described, where the robot has an arbitrary configuration of rotors. To construct a navigation system for the arbitrary 3-axis direction, the static constraint conditions are treated as dynamic equilibrium, and the analytical solution of this formulation is obtained with regard to two terms, namely attitude and height control. Moreover, the obtained analytical solution is implemented as a proportional-integral-derivative controller such that the navigation control system is fused with the attitude and height control systems optimally. To confirm the efficacy of this constructed navigation control system, navigation experiments with arbitrary azimuth direction and height are executed for a manufactured trial quadrotor system as an aerial robot and the results are estimated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.