We demonstrate facile synthesis of mesoporous Pt replicas using double gyroid mesoporous silica (KIT-6) with different pore diameters via vapor infiltration of a reducing agent. Through controlling the complementary pore size, it becomes possible to selectively deposit Pt into one side pore of the Ia3d bicontinuous structure, thereby forming a mesoporous Pt replica with relatively large mesopores (over 10 nm).
Noble metal (Pt, Ag, and Au) nanowires are synthesized by using mesoporous silica (SBA-15) powders as templates through vapor infiltration of a reducing agent (dimethylamine borane, DMAB) under the same reduction conditions. Because SBA-15 has micropores connecting mesochannels, Pt nanowires are connected and periodically packed, reflecting the micropores and the mesochannel arrangements in the original mesoporous silica. On the other hand, other metal (Ag and Au) nanowires are mainly unconnected. Such a difference is attributed to the relatively faster deposition rate of Ag and Au than Pt. Therefore, Ag and Au tend to grow rapidly along the mesochannels, and the metal deposition in micropores is insufficient to occur. The length of the metal nanowires is controlled by the reduction time. As a typical case, the surface plasmon resonance spectra of the Au nanowires embedded in SBA-15 change depending on the length of the nanowires. The present reduction is a soft-chemical, straightforward, and general approach, which has advantages for the synthesis of metal nanowires in large amounts.
A new type of platinum nanowire with a bumpy surface "Pt nanoworm" is electrochemically synthesized in mesochannels of mesoporous silica films with the assistance of a nonionic surfactant (C(16)EO(8)).
Here, we demonstrate mesoporous carbons with different amounts of fullerene cage (MCF) by using a fullerenol-based precursor solution via a nanocasting method with SBA-15 mesoporous silica. The fullerene cages embedded in the frameworks are electrochemically active, showing high potential as an electrode material for an electric double-layer capacitor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.