To clarify the differences in toxin selectivity between marine and freshwater pufferfish, we conducted experiments in artificially reared nontoxic specimens of Takifugu pardalis (marine) and Pao suvattii (freshwater) using tetrodotoxin (TTX) and paralytic shellfish poison (PSP; decarbamoylsaxitoxin (dcSTX) or saxitoxin (STX)). T. pardalis specimens were administered feed homogenate containing TTX or dcSTX (dose of toxin, 55.2 nmol/fish) and P. suvattii specimens were administered feed homogenate containing TTX + STX (dose of each toxin, 19.2 nmol/fish) by oral gavage. The toxin content in the intestine, muscle, skin, liver, and gonads was quantified after 24 and 48 or 72 h. In T. pardalis, TTX administered into the intestine was absorbed into the body and transferred and retained mainly in the skin and liver, while dcSTX was hardly retained in the body, although it partly remained in the intestine. In strong contrast, in P. suvattii, little TTX remained in the body, whereas STX was absorbed into the body and was transferred and retained in the ovary and skin. The findings revealed that TTX/PSP selectivity differs between the marine species T. pardalis and the freshwater species P. suvattii. T. pardalis, which naturally harbors TTX, selectively accumulates TTX, and P. suvattii, which naturally harbors PSP, selectively accumulates PSP.
To investigate tetrodotoxin (TTX) retention by the toxic goby Yongeichthys criniger, rearing experiments feeding nontoxic diets were conducted using 12 (Group I) and 17 (Group II) specimens collected from a natural environment. The specimens were reared in an aquarium with aeration and fed a diet lacking TTX for 60 days. Specimens were removed at 0, 20, 40, and 60 days (Group I) or 0, 30, and 60 days (Group II) after initiation of rearing. Liquid chromatography/mass spectrometry and liquid chromatography-tandem mass spectrometry revealed that whole-body concentrations and amounts of TTX decreased with increasing rearing duration in Group I. There were similar decreases in Group II, but the trend differed among tissues; the concentrations and amounts of TTX in the skin exhibited the greatest decreases. The results imply that Y. criniger has low TTX retention ability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.