The male reproductive functions of the members of the Masherbrum (7821 m) Expedition in 1999 were examined via semen analyses and endocrine tests. Specimens were collected from three subjects who had stayed above 5100 m for 21 to 24 days and above 6700 m for 4 to 5 days before departure and 1 month, 3 months, and 2 yr after returning from the expedition. Semen analyses showed no change in the semen volume. Sperm counts decreased after 1 month and had not recovered after 3 months, but they had recovered after 2 yr in all subjects. An increase in abnormally shaped sperm was also observed after 1 month, but had nearly recovered to the preexpedition state after 3 months. Endocrine tests revealed slightly decreased testosterone in the blood after 1 month, which had decreased still further after 3 months. The tests were completely normal after 2 yr. We suggest that a high altitude sojourn may induce reversible spermatogenic and Leydig cell dysfunction.
This study compared the sperm nuclear vacuoles and semen quality in the evaluation of male infertility. One hundred and forty-two semen samples were obtained from patients who visited the Male Infertility Clinic at Toyama University Hospital. Semen samples were evaluated by conventional semen analyses and the Sperm Motility Analysis System (SMAS). In addition, spermatozoa were analyzed at 3,700-6,150x magnification on an inverted microscope equipped with DIC/Nomarski differential interference contrast optics. A large nuclear vacuole (LNV) was defined as one or more vacuoles with the maximum diameter showing > 50% width of the sperm head. The percentage of spermatozoa with LNV (% LNV) was calculated for each sample. Correlations between the % LNV and parameters in SMAS and conventional semen analyses were analyzed. Processed motile spermatozoa from each sample were evaluated. The mean age of patients was 35 years old. Semen volume was 2.9 ± 1.6mL (0.1-11.0; mean ± standard deviation, minimum-maximum), sperm count was 39.3 ± 54.9 (x10 6 /mL, 0.01-262.0), sperm motility was 25.1 ± 17.8% (0-76.0), and normal sperm morphology was 10.3 ± 10.1% (0-49.0). After motile spermatozoa selection, we could evaluate % LNV in 125 ejaculates (88.0%) and at least one spermatozoon with LNV was observed in 118 ejaculates (94.4%). The percentage of spermatozoa with LNV was 28.0 ± 22.4% (0-100) and % LNV increased significantly when semen quality decreased. The correlation between the % LNV and the semen parameters was weak to moderate; correlation coefficients were -0.3577 in sperm count ( p < 0.0001), -0.2368 in sperm motility ( p = 0.0084), -0.2769 in motile sperm count ( p = 0.019), -0.2419 in total motile sperm count ( p = 0.0070), and -0.1676 in normal sperm morphology ( p = 0.0639). The % LNV did not show a significant correlation with the SMAS parameters except for weak correlation to beat/cross frequency (r = -0.2414, p = 0.0071). The percentage of spermatozoa with LNV did not have a strong correlation with parameters in conventional semen analysis and SMAS in the patients with male infertility; however, a certain level of negative influence of LNV to sperm quality cannot be excluded.
Objective. The clinical factors associated with sperm DNA fragmentation (SDF) were investigated in male patients with infertility. Materials and Methods. Fifty-four ejaculates from infertile Japanese males were used. Thirty-three and twenty-one were from the patients with varicoceles and idiopathic causes of infertility, respectively. We performed blood tests, including the serum sex hormone levels, and conventional and computer-assisted semen analyses. The sperm nuclear vacuolization (SNV) was evaluated using a high-magnification microscope. The SDF was evaluated using the sperm chromatin dispersion test (SCDt) to determine the SDF index (SDFI). The SDFI was compared with semen parameters and other clinical variables, including lifestyle factors. Results. The SDFI was 41.3 ± 22.2% (mean ± standard deviation) and did not depend on the cause of infertility. Chronic alcohol use increased the SDFI to 49.6 ± 23.3% compared with 33.9 ± 18.0% in nondrinkers. The SDFI was related to adverse conventional semen parameters and sperm motion characteristics and correlated with the serum FSH level. The SNV showed a tendency to increase with the SDFI. The multivariate analysis revealed that the sperm progressive motility and chronic alcohol use were significant predictors of the SDF. Conclusion. The SCDt should be offered to chronic alcohol users and those with decreased sperm progressive motility.
Professional phagocytic cells, such as dendritic cells, are mainly responsible for phagocytosis, antigen presentation, and cytokine secretion, which induce subsequent activation of T cell-mediated immunity. Thus, strategies that deliver antigens and stimulatory signals to the cells have significant implications for vaccine design. In this paper, we summarize the potential for liposomes coated with the neoglycolipids containing oligomannose residues (OMLs) as a novel adjuvant for induction of Th1 immune responses and CTLs specific for the encased antigen. OMLs preferentially take up peripheral phagocytic cells. In response to OML uptake, the cells secrete IL-12 selectively, enhance the expression of costimulatory molecules, and migrate into lymphoid tissues from peripheral tissues. OMLs also have the ability to deliver encapsulated protein antigens to the MHC class I and class II pathways to generate antigen-specific CTLs and Th1 cells, respectively, and lipid antigen to CD1d to activate NKT cells. Since administration of OML-based vaccines can eliminate an established tumor, inhibit elevation of the serum IgE level, and prevent progression of protozoan infections in several murine, human, and bovine models, OML-based vaccines have revealed their potential for clinical use in vaccination for a variety of diseases in which CTLs and/or Th1 cells act as effector cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.