In natural communities, species and their interactions are often organized as nonrandom networks, showing distinct and repeated complex patterns. A prevalent, but poorly explored pattern is ecological modularity, with weakly interlinked subsets of species (modules), which, however, internally consist of strongly connected species. The importance of modularity has been discussed for a long time, but no consensus on its prevalence in ecological networks has yet been reached. Progress is hampered by inadequate methods and a lack of large datasets. We analyzed 51 pollination networks including almost 10,000 species and 20,000 links and tested for modularity by using a recently developed simulated annealing algorithm. All networks with >150 plant and pollinator species were modular, whereas networks with <50 species were never modular. Both module number and size increased with species number. Each module includes one or a few species groups with convergent trait sets that may be considered as coevolutionary units. Species played different roles with respect to modularity. However, only 15% of all species were structurally important to their network. They were either hubs (i.e., highly linked species within their own module), connectors linking different modules, or both. If these key species go extinct, modules and networks may break apart and initiate cascades of extinction. Thus, species serving as hubs and connectors should receive high conservation priorities.coevolution ͉ compartment ͉ module ͉ nestedness ͉ species role B iodiversity encompasses not just species but also interactions among species. Within habitats, species and their interactions assemble into large, complex ecological networks. Such networks are rich in structural heterogeneity (1). Understanding network structure and its underlying causes are essential parts of any study of biodiversity and its responses to disturbances, yet it is a conceptual and methodological challenge to address these problems in highly diversified communities with thousands of interactions.Moving through an ecological network of species and their connecting links, one traverses a heterogeneous universe of link-dense and -sparse areas. Link-dense regions are termed compartments (2) or, here, modules (3), whereas link-sparse regions demarcate their boundaries. Species within a module are linked more tightly together than they are to species in other modules. The extent to which species interactions are organized into modules is termed the modularity of the network. Modularity may reflect habitat heterogeneity, divergent selection regimes, and phylogenetic clustering of closely related species (4, 5), leading to nonrandom patterns of interaction and ultimately contributing to the complexity of ecological networks. Modules with their tightly linked species may even be the long-sought key units of coevolution, in which reciprocal selection leads to trait convergence in unrelated species (6). However, modularity has been notoriously difficult to demonstrate either because of it...
Ecological networks are complexes of interacting species, but not all potential links among species are realized. Unobserved links are either missing or forbidden. Missing links exist, but require more sampling or alternative ways of detection to be verified. Forbidden links remain unobservable, irrespective of sampling effort. They are caused by linkage constraints. We studied one Arctic pollination network and two Mediterranean seed-dispersal networks. In the first, for example, we recorded flower-visit links for one full season, arranged data in an interaction matrix and got a connectance C of 15 per cent. Interaction accumulation curves documented our sampling of interactions through observation of visits to be robust. Then, we included data on pollen from the body surface of flower visitors as an additional link 'currency'. This resulted in 98 new links, missing from the visitation data. Thus, the combined visit-pollen matrix got an increased C of 20 per cent. For the three networks, C ranged from 20 to 52 per cent, and thus the percentage of unobserved links (100 2 C) was 48 to 80 per cent; these were assumed forbidden because of linkage constraints and not missing because of under-sampling. Phenological uncoupling (i.e. non-overlapping phenophases between interacting mutualists) is one kind of constraint, and it explained 22 to 28 per cent of all possible, but unobserved links. Increasing phenophase overlap between species increased link probability, but extensive overlaps were required to achieve a high probability. Other kinds of constraint, such as size mismatch and accessibility limitations, are briefly addressed.
Confined within a volcanic caldera at 2000 m a.s.l., the sub‐alpine desert of Tenerife, Canary Islands, harbors a distinct biota. At this altitude the climate is harsh and the growing season short. Hence, plant and animal communities, constituting the sub‐alpine plant–flower‐visitor network, are clearly delimited, both spatially and temporally. We investigated species composition and interaction structure of this system. A total of 11 plant species (91% endemics) and 37 flower‐visiting animal species (62% endemics) formed 108 interactions. Numbers of interactions among species varied ten‐fold within both plant and animal communities. Generalization level of a species was positively correlated with its local abundance. Two separate network analyses revealed a significantly nested structure. In relation to a plant–flower‐visitor system, nestedness implies that specialized species (animals or plants) interact with a subset of the species pool visiting (animals) or being visited (plants) by more generalized species. Therefore, specialized, locally rare plants tend to be visited by generalized, locally abundant animals, and specialized, locally rare animals tend to utilize generalized, locally abundant food plants. Such patterns could have implications for conservation of the sub‐alpine network, and stress the importance of preserving not only rare species, but also the more abundant ones, which may be key food resources or pollinators in the plant–flower‐visitor network.
Pollination networks are representations of all interactions between co‐existing plants and their flower visiting animals at a given site. Although the study of networks has become a distinct sub‐discipline in pollination biology, few studies have attempted to quantify spatio‐temporal variation in species composition and structure of networks. We here investigate patterns of year‐to‐year change in pollination networks from six different sites spanning a large latitudinal gradient. We quantified level of species persistence and interactions among years, and examined year‐to‐year variation of network structural parameters in relation to latitude and sampling effort. In addition, we tested for correlations between annual variation in network parameters and short and long‐term climate change variables. Numbers of plant and animal species and interactions were roughly constant from one year to another at all sites. However, composition of species and interactions changed from one year to another. Turnover was particularly high for flower visitors and interactions. On the other hand, network structural parameters (connectance, nestedness, modularity and centralization) remained remarkably constant between years, regardless of network size and latitude. Inter‐annual variation of network parameters was not related to short or long term variation in climate variables (mean annual temperature and annual precipitation). We thus conclude that pollination networks are highly dynamic and variable in composition of species and interactions among years. However, general patterns of network structure remain constant, indicating that species may be replaced by topologically similar species. These results suggest that pollination networks are to some extent robust against factors affecting species occurrences.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.