Side population (SP) cells, which can be identified by their ability to exclude Hoechst 33342 dye, are one of the candidates for somatic stem cells. Although bone marrow SP cells are known to be long-term repopulating hematopoietic stem cells, there is little information about the characteristics of cardiac SP cells (CSPs). When cultured CSPs from neonatal rat hearts were treated with oxytocin or trichostatin A, some CSPs expressed cardiac-specific genes and proteins and showed spontaneous beating. When green fluorescent protein–positive CSPs were intravenously infused into adult rats, many more (∼12-fold) CSPs were migrated and homed in injured heart than in normal heart. CSPs in injured heart differentiated into cardiomyocytes, endothelial cells, or smooth muscle cells (4.4%, 6.7%, and 29% of total CSP-derived cells, respectively). These results suggest that CSPs are intrinsic cardiac stem cells and involved in the regeneration of diseased hearts.
Background-A hypointense core of infarcted myocardium in T2-weighted cardiovascular MRI (CMR) has been used as a noninvasive marker for intramyocardial hemorrhage. However, the clinical significance of such findings not yet been established. The aim of this study was to evaluate determinants and prognostic impact of a hypointense infarct core in T2-weighted CMR images, studied in patients after acute, reperfused ST-elevation-myocardial infarction. Methods and Results-We analyzed 346 patients with ST-elevation-myocardial infarction undergoing primary angioplasty Ͻ12 hours after symptoms onset. T2-weighted, contrast-enhanced CMR was used for assessment of the area at risk, myocardial salvage, infarct size, hypointense core in T2-weighted images, and late microvascular obstruction. Patients were categorized into 2 groups defined by the presence or absence of a hypointense core. The primary end point of the study was occurrence of major adverse cardiovascular events defined as death, reinfarction, and congestive heart failure within 6 months after infarction. A hypointense core was present in 122 (35%) patients and was associated with larger infarcts, greater amount of microvascular obstruction, less myocardial salvage, and impaired left ventricular function (PϽ0.001, respectively). The presence of a hypointense core was a strong univariable predictor of major adverse cardiovascular events (hazard ratio, 2.59; confidence interval, 1.27 to 5.27) and was significantly associated with an increased major adverse cardiovascular events rate (16.4% versus 7.0%, Pϭ0.006) 6 months after infarction. Conclusions-
BackgroundThe presence and extent of late gadolinium enhancement (LGE) has been associated with adverse events in patients with hypertrophic cardiomyopathy (HCM). Signal intensity (SI) threshold techniques are routinely employed for quantification; Full-Width at Half-Maximum (FWHM) techniques are suggested to provide greater reproducibility than Signal Threshold versus Reference Mean (STRM) techniques, however the accuracy of these approaches versus the manual assignment of optimal SI thresholds has not been studied. In this study, we compared all known semi-automated LGE quantification techniques for accuracy and reproducibility among patients with HCM.MethodsSeventy-six HCM patients (51 male, age 54 ± 13 years) were studied. Total LGE volume was quantified using 7 semi-automated techniques and compared to expert manual adjustment of the SI threshold to achieve optimal segmentation. Techniques tested included STRM based thresholds of >2, 3, 4, 5 and 6 SD above mean SI of reference myocardium, the FWHM technique, and the Otsu-auto-threshold (OAT) technique. The SI threshold chosen by each technique was recorded for all slices. Bland-Altman analysis and intra-class correlation coefficients (ICC) were reported for each semi-automated technique versus expert, manually adjusted LGE segmentation. Intra- and inter-observer reproducibility assessments were also performed.ResultsFifty-two of 76 (68%) patients showed LGE on a total of 202 slices. For accuracy, the STRM >3SD technique showed the greatest agreement with manual segmentation (ICC = 0.97, mean difference and 95% limits of agreement = 1.6 ± 10.7 g) while STRM >6SD, >5SD, 4SD and FWHM techniques systematically underestimated total LGE volume. Slice based analysis of selected SI thresholds similarly showed the STRM >3SD threshold to most closely approximate manually adjusted SI thresholds (ICC = 0.88). For reproducibility, the intra- and inter-observer reproducibility of the >3SD threshold demonstrated an acceptable mean difference and 95% limits of agreement of −0.5 ± 6.8 g and −0.9 ± 5.6 g, respectively.ConclusionsFWHM segmentation provides superior reproducibility, however systematically underestimates total LGE volume compared to manual segmentation in patients with HCM. The STRM >3SD technique provides the greatest accuracy while retaining acceptable reproducibility and may therefore be a preferred approach for LGE quantification in this population.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.