Stroke is a major cause of mortality and disability worldwide. The main cause of stroke is atherosclerosis, and the most common risk factor for atherosclerosis is hypertension. Therefore, antihypertensive treatments are recommended for the prevention of stroke. Three angiotensin receptor blockers (ARBs), telmisartan, irbesartan and candesartan, inhibit the expression of the receptor for advanced glycation end-products (RAGE), which is one of the pleiotropic effects of these drugs. High mobility group box 1 (HMGB1) is the ligand of RAGE, and has been recently identified as a lethal mediator of severe sepsis. HMGB1 is an intracellular protein, which acts as an inflammatory cytokine when released into the extracellular milieu. Extracellular HMGB1 causes multiple organ failure and contributes to the pathogenesis of hypertension, hyperlipidemia, diabetes mellitus, atherosclerosis, thrombosis, and stroke. This is the first review of the literature evaluating the potential of three ARBs for the HMGB1-RAGE axis on stroke therapy, including prevention and acute treatment. This review covers clinical and experimental studies conducted between 1976 and 2013. We propose that ARBs, which inhibit the HMGB1/RAGE axis, may offer a novel option for prevention and acute treatment of stroke. However, additional clinical studies are necessary to verify the efficacy of ARBs.
The combination of alteplase, a recombinant tissue plasminogen activator, and edaravone, an antioxidant, reportedly enhances recanalization after acute ischemic stroke. We examined the influence of edaravone on the thrombolytic efficacy of alteplase by measuring thrombolysis using a newly developed microchip-based flow-chamber assay. Rat models of embolic cerebral ischemia were treated with either alteplase or alteplase-edaravone combination therapy. The combination therapy significantly reduced the infarct volume and improved neurological deficits. Human blood samples from healthy volunteers were exposed to edaravone, alteplase, or a combination of alteplase and edaravone or hydrogen peroxide. Whole blood was perfused over a collagen- and thromboplastin-coated microchip; capillary occlusion was monitored with a video microscope and flow-pressure sensor. The area under the curve (extent of thrombogenesis or thrombolysis) at 30 minutes was 69.9% lower in the edaravone-alteplase- than alteplase-treated group. The thrombolytic effect of alteplase was significantly attenuated in the presence of hydrogen peroxide, suggesting that oxidative stress might hinder thrombolysis. D-dimers were measured to evaluate these effects in human platelet-poor plasma samples. Although hydrogen peroxide significantly decreased the elevation of D-dimers by alteplase, edaravone significantly inhibited the decrease. Edaravone enhances alteplase-mediated thrombolysis, likely by preventing oxidative stress, which inhibits fibrinolysis by alteplase in thrombi.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations鈥揷itations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.