We found adult human stem cells that can generate, from a single cell, cells with the characteristics of the three germ layers. The cells are stress-tolerant and can be isolated from cultured skin fibroblasts or bone marrow stromal cells, or directly from bone marrow aspirates. These cells can self-renew; form characteristic cell clusters in suspension culture that express a set of genes associated with pluripotency; and can differentiate into endodermal, ectodermal, and mesodermal cells both in vitro and in vivo. When transplanted into immunodeficient mice by local or i.v. injection, the cells integrated into damaged skin, muscle, or liver and differentiated into cytokeratin 14-, dystrophin-, or albumin-positive cells in the respective tissues. Furthermore, they can be efficiently isolated as SSEA-3(+) cells. Unlike authentic ES cells, their proliferation activity is not very high and they do not form teratomas in immunodeficient mouse testes. Thus, nontumorigenic stem cells with the ability to generate the multiple cell types of the three germ layers can be obtained through easily accessible adult human mesenchymal cells without introducing exogenous genes. These unique cells will be beneficial for cell-based therapy and biomedical research.
Myogenin is a member of the basic helix-loop-helix (bHLH) gene family and converts multipotential mesodermal cells to myoblasts. The four members of the myoD family show unique spatio-temporal expression patterns and therefore may have different functions during myogenesis. Here we inactivate the myogenin gene in order to understand its role in myogenesis. Homozygous mutations are lethal perinatally owing to the resulting major defects in skeletal muscle. The extent of disorganization of muscle tissue differs in three regions. In the latero-ventral body wall, most cells, including myogenic cells, disappear and there is rapid accretion of fluid. In the limbs, cells of the myogenic lineage exist, but they are severely disrupted, and some of them are mono-nucleate with properties of myoblasts. In contrast, there are many axial, intercostal and back muscle fibres to be seen, although fibres are mainly disorganized and Z-lines are not present in most myofibrils. These findings are evidence that myogenin is crucial for muscle development in utero and demonstrate that other members of the myogenic gene family cannot compensate for the defect.
Sonic hedgehog (Shh), an organizing signal from ventral midline structures, is essential for the induction and maintenance of many ventral cell types in the embryonic neural tube. Olig1 and Olig2 are related basic helix-loop-helix factors induced by Shh in the ventral neural tube. Although expression analyses and gain-of-function experiments suggested that these factors were involved in motoneuron and oligodendrocyte development, they do not clearly define the functional differences between Olig1 and Olig2. We generated mice with a homozygous inactivation of Olig2. These mice did not feed and died on the day of birth. In the spinal cord of the mutant mice, motoneurons are largely eliminated and oligodendrocytes are not produced. Olig2(-/-) neuroepithelial cells in the ventral spinal cord failed to differentiate into motoneurons or oligodendrocytes and expressed an astrocyte marker, S100beta, at the time of oligodendrogenesis. Olig1 or Olig3, other family members, were expressed in the descendent cells that should have expressed Olig2. We concluded that Olig2 is an essential transcriptional regulator in motoneuron and oligodendrocyte development. Our data provide the first evidence that a single gene mutation leads to the loss of two cell types, motoneuron and oligodendrocyte.
alpha-klotho was identified as a gene associated with premature aging-like phenotypes characterized by short lifespan. In mice, we found the molecular association of alpha-Klotho (alpha-Kl) and Na+,K+-adenosine triphosphatase (Na+,K+-ATPase) and provide evidence for an increase of abundance of Na+,K+-ATPase at the plasma membrane. Low concentrations of extracellular free calcium ([Ca2+]e) rapidly induce regulated parathyroid hormone (PTH) secretion in an alpha-Kl- and Na+,K+-ATPase-dependent manner. The increased Na+ gradient created by Na+,K+-ATPase activity might drive the transepithelial transport of Ca2+ in cooperation with ion channels and transporters in the choroid plexus and the kidney. Our findings reveal fundamental roles of alpha-Kl in the regulation of calcium metabolism.
Using the gene targeting technique, we have generated a new mouse model of congenital muscular dystrophy (CMD), a null mutant for the laminin oc2 chain. These homozygous mice, designated dy 3K ldy 3K , are characterized by growth retardation and severe muscular dystrophic symptoms and die by 5 weeks of age. Light microscopy revealed that muscle fiber degeneration in these mice begins no later than postnatal day 9. In degenerating muscles, considerable amounts of TUNEL positive nuclei were detected as well as DNA laddering, suggesting increased apoptotic cell death was involved in the process of muscle fiber degeneration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.