Cardio-facio-cutaneous (CFC) syndrome is characterized by a distinctive facial appearance, heart defects and mental retardation. It phenotypically overlaps with Noonan and Costello syndrome, which are caused by mutations in PTPN11 and HRAS, respectively. In 43 individuals with CFC, we identified two heterozygous KRAS mutations in three individuals and eight BRAF mutations in 16 individuals, suggesting that dysregulation of the RAS-RAF-ERK pathway is a common molecular basis for the three related disorders.
The RAS proteins and their downstream pathways play pivotal roles in cell proliferation, differentiation, survival and cell death, but their physiological roles in human development had remained unknown. Noonan syndrome, Costello syndrome, and cardio‐facio‐cutaneous (CFC) syndrome are autosomal dominant multiple congenital anomaly syndromes characterized by a distinctive facial appearance, heart defects, musculocutaneous abnormalities, and mental retardation. A variety of mutations in protein tyrosine phosphatase, non‐receptor type 11(PTPN11) has been identified in 50% of Noonan patients. Specific mutations in PTPN11 have been identified in LEOPARD (multiple lentigines, electrocardiographic conduction abnormalities, ocular hypertelorism, pulmonary stenosis, abnormal genitalia, retardation of growth, and sensorineural deafness) syndrome. In 2005, we discovered Harvey‐RAS (HRAS) germline mutations in patients with Costello syndrome. This discovery provided a clue to identification of germline mutations in Kirsten‐RAS (KRAS), BRAF and mitogen‐activated protein kinase kinase 1 and 2 (MAP2K1/MAP2K2) in patients with CFC syndrome. These genes encode molecules in the RAS/RAF/MEK/extracellular signal‐regulated kinase (ERK) pathway, leading to a new concept that clinically related disorders, i.e., Noonan, Costello, and CFC syndromes are caused by dysregulation of the RAS/mitogen activated protein kinase (MAPK) pathway. In the present review, we summarize mutations in HRAS, KRAS, BRAF, MAP2K1/2, and PTPN11, the phenotypes of patients with these mutations, the functional properties of mutants and animal models. Finally we suggest that disorders with mutations of molecules in the RAS/MAPK cascade (Noonan, LEOPARD, Costello, and CFC syndromes and neurofibromatosis type I) may be comprehensively termed “the RAS/MAPK syndromes.” Details on mutations will be updated in the RAS/MAPK Syndromes Homepage (http://www.medgen.med.tohoku.ac.jp/RasMapk syndromes.html). Hum Mutat 0, 1–15, 2008. © 2008 Wiley‐Liss, Inc.
Noonan syndrome (NS) and related disorders are autosomal dominant disorders characterized by heart defects, facial dysmorphism, ectodermal abnormalities, and mental retardation. The dysregulation of the RAS/MAPK pathway appears to be a common molecular pathogenesis of these disorders: mutations in PTPN11, KRAS, and SOS1 have been identified in patients with NS, those in KRAS, BRAF, MAP2K1, and MAP2K2 in patients with CFC syndrome, and those in HRAS mutations in Costello syndrome patients. Recently, mutations in RAF1 have been also identified in patients with NS and two patients with LEOPARD (multiple lentigines, electrocardiographic conduction abnormalities, ocular hypertelorism, pulmonary stenosis, abnormal genitalia, retardation of growth, and sensorineural deafness) syndrome. In the current study, we identified eight RAF1 mutations in 18 of 119 patients with NS and related conditions without mutations in known genes. We summarized clinical manifestations in patients with RAF1 mutations as well as those in NS patients withPTPN11, SOS1, or KRAS mutations previously reported. Hypertrophic cardiomyopathy and short stature were found to be more frequently observed in patients with RAF1 mutations. Mutations in RAF1 were clustered in the conserved region 2 (CR2) domain, which carries an inhibitory phosphorylation site (serine at position 259; S259). Functional studies revealed that the RAF1 mutants located in the CR2 domain resulted in the decreased phosphorylation of S259, and that mutant RAF1 then dissociated from 14-3-3, leading to a partial ERK activation. Our results suggest that the dephosphorylation of S259 is the primary pathogenic mechanism in the activation of RAF1 mutants located in the CR2 domain as well as of downstream ERK.
Cardio-facio-cutaneous (CFC) syndrome is a multiple congenital anomaly/mental retardation syndrome characterized by heart defects, a distinctive facial appearance, ectodermal abnormalities and mental retardation. Clinically, it overlaps with both Noonan syndrome and Costello syndrome, which are caused by mutations in two genes, PTPN11 and HRAS, respectively. Recently, we identified mutations in KRAS and BRAF in 19 of 43 individuals with CFC syndrome, suggesting that dysregulation of the RAS/RAF/MEK/ERK pathway is a molecular basis for CFC syndrome. The purpose of this study was to perform comprehensive mutation analysis in 56 patients with CFC syndrome and to investigate genotype-phenotype correlation. We analyzed KRAS, BRAF, and MAP2K1/2 (MEK1/2) in 13 new CFC patients and identified five BRAF and one MAP2K1 mutations in nine patients. We detected one MAP2K1 mutation in three patients and four new MAP2K2 mutations in four patients out of 24 patients without KRAS or BRAF mutations in the previous study [Niihori et al., 2006]. No mutations were identified in MAPK3/1 (ERK1/2) in 21 patients without any mutations. In total, 35 of 56 (62.5%) patients with CFC syndrome had mutations (3 in KRAS, 24 in BRAF, and 8 in MAP2K1/2). No significant differences in clinical manifestations were found among 3 KRAS-positive patients, 16 BRAF-positive patients, and 6 MAP2K1/2-positive patients. Wrinkled palms and soles, hyperpigmentation and joint hyperextension, which have been commonly reported in Costello syndrome but not in CFC syndrome, were observed in 30-40% of the mutation-positive CFC patients, suggesting a significant clinical overlap between these two syndromes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.