SUMMARYBackgroundBilateral perisylvian polymicrogyria (BPP), the most common form of regional polymicrogyria, causes the congenital bilateral perisylvian syndrome, featuring oromotor dysfunction, cognitive impairment and epilepsy. BPP is etiologically heterogeneous, but only a few genetic causes have been reported. The aim of this study was to identify additional genetic etiologies of BPP and delineate their frequency in this patient population.MethodsWe performed child-parent (trio)-based whole exome sequencing (WES) on eight children with BPP. Following the identification of mosaic PIK3R2 mutations in two of these eight children, we performed targeted screening of PIK3R2 in a cohort of 118 children with BPP who were ascertained from 1980 until 2015 using two methods. First, we performed targeted sequencing of the entire PIK3R2 gene by single molecule molecular inversion probes (smMIPs) on 38 patients with BPP with normal-large head size. Second, we performed amplicon sequencing of the recurrent PIK3R2 mutation (p.Gly373Arg) on 80 children with various types of polymicrogyria including BPP. One additional patient underwent clinical WES independently, and was included in this study given the phenotypic similarity to our cohort. All patients included in this study were children (< 18 years of age) with polymicrogyria enrolled in our research program.FindingsUsing WES, we identified a mosaic mutation (p.Gly373Arg) in the regulatory subunit of the PI3K-AKT-MTOR pathway, PIK3R2, in two children with BPP. Of the 38 patients with BPP and normal-large head size who underwent targeted next generation sequencing by smMIPs, we identified constitutional and mosaic PIK3R2 mutations in 17 additional children. In parallel, one patient was found to have the recurrent PIK3R2 mutation by clinical WES. Seven patients had BPP alone, and 13 had BPP in association with features of the megalencephaly-polymicrogyria-polydactyly-hydrocephalus syndrome (MPPH). Nineteen patients had the same mutation (Gly373Arg), and one had a nearby missense mutation (p.Lys376Glu). Across the entire cohort, mutations were constitutional in 12 and mosaic in eight patients. Among mosaic patients, we observed substantial variation in alternate (mutant) allele levels ranging from 2·5% (10/377) to 36·7% (39/106) of reads, equivalent to 5–73·4% of cells analyzed. Levels of mosaicism varied from undetectable to 17·1% (37/216) of reads in blood-derived compared to 29·4% (2030/6889) to 43·3% (275/634) in saliva-derived DNA.InterpretationConstitutional and mosaic mutations in the PIK3R2 gene are associated with a spectrum of developmental brain disorders ranging from BPP with a normal head size to the megalencephaly-polymicrogyria-polydactyly-hydrocephalus syndrome. The phenotypic variability and low-level mosaicism challenging conventional molecular methods have important implications for genetic testing and counseling.
BackgroundIn this study, we aimed to identify the gene abnormality responsible for pathogenicity in an individual with an undiagnosed neurodevelopmental disorder with megalencephaly, ventriculomegaly, hypoplastic corpus callosum, intellectual disability, polydactyly and neuroblastoma. We then explored the underlying molecular mechanism.MethodsTrio-based, whole-exome sequencing was performed to identify disease-causing gene mutation. Biochemical and cell biological analyses were carried out to elucidate the pathophysiological significance of the identified gene mutation.ResultsWe identified a heterozygous missense mutation (c.173C>T; p.Thr58Met) in the MYCN gene, at the Thr58 phosphorylation site essential for ubiquitination and subsequent MYCN degradation. The mutant MYCN (MYCN-T58M) was non-phosphorylatable at Thr58 and subsequently accumulated in cells and appeared to induce CCND1 and CCND2 expression in neuronal progenitor and stem cells in vitro. Overexpression of Mycn mimicking the p.Thr58Met mutation also promoted neuronal cell proliferation, and affected neuronal cell migration during corticogenesis in mouse embryos.ConclusionsWe identified a de novo c.173C>T mutation in MYCN which leads to stabilisation and accumulation of the MYCN protein, leading to prolonged CCND1 and CCND2 expression. This may promote neurogenesis in the developing cerebral cortex, leading to megalencephaly. While loss-of-function mutations in MYCN are known to cause Feingold syndrome, this is the first report of a germline gain-of-function mutation in MYCN identified in a patient with a novel megalencephaly syndrome similar to, but distinct from, CCND2-related megalencephaly-polymicrogyria-polydactyly-hydrocephalus syndrome. The data obtained here provide new insight into the critical role of MYCN in brain development, as well as the consequences of MYCN defects.
Developmental and epileptic encephalopathy is a group of conditions characterized by the co‐occurrence of epilepsy and intellectual disability, in which there is additional developmental impairment independent of epileptic activity. Biallelic variants of SZT2, a known seizure threshold regulator gene, have been linked to a wide spectrum of clinical features, ranging from severe intellectual disability with refractory seizures to mild intellectual disability without seizures. Here, we describe a child with developmental and epileptic encephalopathy whose genetic testing led to the identification of novel biallelic variants of SZT2, a paternally inherited c.2798C>T, p.(Ser933Phe) variant and a maternally inherited c.4549C>T, p.(Arg1517Trp) variant. Our patient showed common clinical and radiographic features among patients with SZT2‐related encephalopathy. However, neonatal‐onset seizures and suppression‐burst EEG activity, not previously associated with SZT2‐related encephalopathy, were observed in this case. Although the seizures were controlled with carbamazepine, the developmental consequences remained profound, suggesting that the developmental impairments might be attributed to a direct effect of the SZT2 variants rather than the epileptic activity. We propose that SZT2 variants should be regarded among those that are believed to cause neonatal‐onset developmental and epileptic encephalopathy with a suppression‐burst pattern on EEG.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.