Gravity separation techniques such as jigging are based on the difference in the settling velocities of particles in water, which depends on the specific gravity, size, and shape of the particles. When a particle falls in stationary water, it is known that its settling velocity in the acceleration period before it reaches its terminal velocity depends on its specific gravity. Therefore, if one jigging cycle were completed before the particle reaches its terminal velocity, separation based on the difference in particle specific gravity would be promoted as the jigging frequency increases. However, there are few reports discussing whether the acceleration period in stationary water could be applied to an unsteady jigging movement. In this study, we used particles of around 1 mm, which are small particles for a jig, and investigated the relation between jigging frequency and particle movement. We have concluded from the results that although the reason is incorrect, the above classical hypothesis reflects the actual phenomenon, since the effect calculated in this study almost agrees with estimations obtained using the hypothesis developed by Gaudin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.